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Inverse problems arise naturally in the physical world around us. The
inverse boundary value problem consists of gaining some knowledge about
the interior of a body from measurements on the boundary. In medical
diagnostics, for example, one is interested in determining the location and/or
the size of a tumor inside the body from measurements taken just on the
outside. There are also applications in the earth sciences, for example, where
one uses measurements taken on the surface in order to locate oil or minerals
inside earth.

We are interested in uniqueness results for the inverse problems. To state
our inverse boundary value problem, first consider the following boundary
value problem

∇ · (γ(x)∇u) = 0 in Ω
u
∣∣
∂Ω

= f,(1)

where Ω is some bounded subset of R2, ∂Ω is C∞, f ∈ C∞(∂Ω), and γ(x)
is a positive definite symmetric matrix. If (1) has a unique solution for each
f , we can define a Dirichlet-to-Neumann operator

Λ : ∂Ω → ∂Ω by

Λf =
∂u

∂n

∣∣∣
∂Ω

,(2)

where n is the exterior unit normal vector to ∂Ω.
The inverse boundary value problem for (1) consists of determining γ(x)

from the knowledge of Λ. Notice that this problem is equivalent to the
impedance tomography problem, where the goal is to use voltage and current
measurements on the boundary in order to find the conductivity of a given
material. Here, γ(x) represents the electrical conductivity of some material,
u(x)

∣∣
∂Ω

is the voltage, and ∂u
∂n

∣∣∣
∂Ω

is the current on the boundary. So our

2000 Mathematics Subject Classification. 65N21.
Key words and phrases. Partial Differential Equations, Inverse Boundary Value

Problems.

161



162 WOMEN IN MATHEMATICS: MAY 18–20, 2006

Dirichlet-to-Neumann map is a set of values of u(x)
∣∣
∂Ω

and corresponding
∂u
∂n

∣∣
∂Ω

, and is often called the “voltage-to-current” map.

To answer whether Λ determines γ(x) uniquely, which is the question that
was posed by Calderon [1], there has been a body of work produced in the
last few decades. Kohn and Vogelius [6] proved that Λ determines γ(x) and
all of its derivatives, but only on the boundary, if ∂Ω is C∞. Sylvester and
Uhlmann [10] proved for n ≥ 3 that Λ uniquely determines γ, if ∂Ω is C∞

and γ is in C∞(Ω) (global uniqueness). The 2-dimensional case, however,
is the hardest, as unlike in n ≥ 3, the inverse problem for n = 2 is not
overdetermined. For n = 2, Sylvester and Uhlmann [9] showed uniqueness
(up to a change of coordinates) for γ(x), when log(det γ(x)) is small in C3.
This result was strengthened by Nachman [7], who showed that for n = 2, Λ
determines γ(x) uniquely (up to a change of coordinates) without the extra
assumption used in [9]. Further uniqueness results in two dimensions were
obtained by Grinevich and Novikov [3], by Isakov and Nachman [4], and by
Isakov and Sun [5].

We consider the anisotropic elliptic equation in R2. We provide a dif-
ferent proof (the article is in preparation) of Nachman’s result [7], that
the Dirichlet-to-Neumann map determines the coefficients of the equation
uniquely, up to a change of coordinates. We believe that the methods used
in our proof (e.g., the absence of the essential points) can be used to solve the
inverse boundary value problem for a more general second order operator.
We prove the following theorem.

Theorem 1. Let

(3) Lp(x,−i∂x) = −
2∑

i,j=1

∂

∂xi
(γij

p

∂

∂xj
), p = 1, 2

with corresponding Λp defined as in (2). If Λ1 = Λ2, then there exists a
diffeomorphism y = S(x), such that

γ2(y) =
(JS(x))T γ1(x)JS(x)

det(JS(x))

where JS(x) is the Jacobian matrix of y = S(x). Moreover,

S = I on ∂Ω.

In our proof, we use the method previously employed by Sylvester [8]
and by Eskin and Ralston [2], which consists of reducing the anisotropic
conductivity γ to an isotropic one using isothermal coordinates, then after
change of dependent variables getting a Schrödinger equation. We also use
work of Nachman [7] and ∂-equation, but our proofs of some key points are
different and new.
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