March 1992 General Examination in Analysis (administered by J. B. Brown).

Work at least 8 problems.

- 1.a) Define what it means to say that a subset M of [0,1] is (i) nowhere dense, (ii) first category, (iii) of Lebesgue measure zero, (iv) Lebesgue measurable.
 - b) Give an example (include details of construction) of a nowhere dense set which is of positive measure.
 - 2. Describe a non-measurable subset of [0,1] and explain why you know it is nonmeasurable.

(Hypothesis for 6-9) Let f, f_1, f_2, \ldots be real valued functions which are measurable with respect to a σ -algebra A on a set Ω , and let μ be a (finite) measure on μ .

- 3. Define what it means to say that (a) $\{f_n\}$ converges to f in measure μ , (b) $\{f_n\}$ converges to f uniformly, (c) $\{f_n\}$ converges to f almost everywhere (μ) , (d) $\{f_n\}$ converges to f in the $L^1(\mu)$ sense, (e) $\{f_n\}$ converges to f pointwise.
- 4. Line up the notions of convergence of # 3 in-so-far-as which implies which. Give an example which shows that at least two of these implications don't hold if the measure μ is σ -finite rather than finite.
- 5. Prove that if $\{f_n\}$ converges to f in measure μ , then some subsequence of $\{f_n\}$ converges to f almost everywhere (μ) .
- 6. Prove Egorov's theorem, i.e. that if $\{f_n\}$ converges almost everywhere (μ) to f and $\varepsilon > 0$, then there is a set M such that $\mu(M^c) < \varepsilon$ and $\{f_n|M\}$ converges to f|M uniformly.
- 7. State the "Lebesgue Dominated Convergence Theorem" (about moving " $\lim_{n\to\infty}$ " inside or outside the integral sign).
- 8. Give two equivalent definitions (an " $\varepsilon \delta$ -partition" definition and another involving Lebesgue integrals) for what it means to say that a function $f: [0, 1] \to \mathbb{R}$ is absolutely continuous. Give an example of a function $f: [0, 1] \to \mathbb{R}$ which is continuous and of bounded variation but is not absolutely continuous.
- 9. Define $\ell^p, L^p[0,1], L^p(\mathbb{R})$, and $L^p(\mu)$ for $0 { you can make the <math>L^p$ -spaces collections of functions or collections of equivalence classes of functions, either way is OK }.

- 10. (a) Give an example which shows that $L^p[0,1]$ is not closed under taking of products if 0 .
 - (b) Explain why it is true that if $f \in L^1[0,1]$, then $\sqrt{|f|} \in L^1[0,1]$, but that the same does not hold for $L^1(\mathbb{R})$.
 - 11. Define "Banach Space". For which $0 is <math>L^p[0, 1]$ { assuming the equivalence class definition } a Banach space? What goes wrong for the other p's? What is the norm for the case where $L^p[0, 1]$ is a Banach space?