SOME REMARKS ON GENERALIZED BOREL MEASURES IN TOPOLOGICAL SPACES

by

W. F. PFEFFER
SOME REMARKS ON GENERALIZED BOREL MEASURES IN TOPOLOGICAL SPACES

W. F. Pfeffer

Given a set A, we shall denote by $|A|$ the cardinality of A and by $\exp A$ the family of all subsets of A. Throughout, α will denote an uncountable cardinal and β, γ, will denote infinite cardinals. Whenever convenient, we shall identify a cardinal with its initial ordinal. As usual, we shall denote by ω and Ω the first infinite and the first uncountable cardinals, respectively.

Definition 1. Let M be a set. A family $\mathcal{M} \subset \exp M$ is called an α-algebra in M if

(i) $(A \in \mathcal{M}, \ |A| < \alpha) \Rightarrow \cup A \in \mathcal{M}$;

(ii) $A \in \mathcal{M} \Rightarrow M - A \in \mathcal{M}$.

It follows from (i) that $\emptyset \in \mathcal{M}$; thus by (ii), also $M \in \mathcal{M}$.

Definition 2. Let \mathcal{M} be an α-algebra in a set M. A function $\mu: \mathcal{M} \rightarrow [0, +\infty]$ is called an α-measure on \mathcal{M} if

$\mu(\emptyset) = 0$ and

$\mu(\cup A) = \sum \{\mu(A): A \in A\}$

for each disjoint family $A \subset \mathcal{M}$ with $|A| < \alpha$.

The triple (M, \mathcal{M}, μ) is called an α-measure space.

Definition 3. Let (M, \mathcal{M}, μ) be an α-measure space. The α-measure μ is called β-finite if there is an $A \subset \mathcal{M}$ such that $|A| \leq \beta$, $\cup A = M$, and $\mu(A) < +\infty$ for each $A \in A$.

If \(\alpha = \Omega \) and \(\beta = \omega \), then the previous definitions reduce to the usual definitions of a \(\sigma \)-algebra, measure, and a \(\sigma \)-finite measure. To illustrate the situation when \(\alpha > \Omega \) and \(\beta > \omega \), we shall present a few examples.

Example 1. Let \(M \) be a set and let \(f: M \to [0, +\infty] \). For \(A \subset M \) set

\[
\mu(A) = \sum \{ f(x) : x \in A \}.
\]

Then \(\mu \) is an \(\alpha \)-measure on \(\exp M \) for each \(\alpha \). If \(\mu(M) = +\infty \), then \(\mu \) is \(\beta \)-finite if and only if

\[
|\{ x \in M : f(x) > 0 \}| \leq \beta.
\]

Example 2. Let \(\kappa \geq \Omega \) be a regular ordinal and let \(W \) be the set of all ordinals less than \(\kappa \) equipped with the order topology. Denote by \(\mathcal{H} \) the family of all closed cofinal subsets of \(W \) and let \(\mathcal{M} \) consist of all sets \(A \subset W \) for which either \(A \) or \(W - A \) contain a set \(F \in \mathcal{H} \). For \(A \in \mathcal{M} \), let

\[
\mu(A) = 1 \text{ if } A \text{ contains a set } F \in \mathcal{H}, \text{ and } \mu(A) = 0 \text{ otherwise.}
\]

Clearly, \(\mathcal{M} \) contains all open subsets of \(W \). To show that \((W, \mathcal{M}, \mu) \) is a \(\kappa \)-measure space, it suffices to prove the following claim.

Claim. If \(\mathcal{H}_0 \subset \mathcal{H} \) and \(|\mathcal{H}_0| < \kappa \), then \(\cap \mathcal{H}_0 \in \mathcal{H} \).

Proof. Using the interlacing lemma (see [8], chpt. 4, prbl. E, (a), p. 131) in \(W \), it is easy to prove the claim if \(|\mathcal{H}_0| = 2 \). By induction, the claim is correct if \(|\mathcal{H}_0| < \omega \).

Let \(\omega \leq \xi < \kappa \) and suppose that the claim holds whenever \(|\mathcal{H}_0| < \xi \). Let \(\mathcal{H}_0 = \{ F_\rho : \rho < \xi \} \). Replacing \(F_\rho \) by \(\cap \{ F_\tau : \tau \leq \rho \} \), we may assume that \(F_\tau \subset F_\rho \) for each \(\tau \leq \rho < \xi \). Choose an \(\eta < \kappa \). Since \(\kappa \) is regular, there are \(\eta_\tau \in F_\tau \) such that \(\eta < \eta_\tau < \eta_\rho \) for each \(\tau < \rho < \xi \). If
\[\zeta = \sup \{ \eta_\rho : \rho < \xi \}, \]
then \(\zeta \in \bigcap H^0 \); for by the regularity of \(\kappa \), \(\zeta < \kappa \). It follows that \(\bigcap H^0 \) is a cofinal subset of \(W \) and the claim is proved.

Example 3. Let \(|M| = \kappa \) where \(\kappa \) is the first measurable cardinal (see Definition 6), and let \(\mu \) be a \(\sigma \)-additive measure on \(\exp M \) such that \(\mu(M) = 1 \) and \(\mu({x}) = 0 \) for each \(x \in M \). Then it follows from [2], Lemma 0.4.12 that \(\mu \) is a \(\kappa \)-measure on \(\exp M \).

Example 4. Karel Hrbacek kindly pointed out to me the following fact proved in [10], sec. 4, coroll. 1. If \(\alpha \) is a regular cardinal, then there is a model for the Zermelo-Fraenkel set theory with the axiom of choice in which

(i) \(2^\omega = \alpha \) and Martin's axiom A holds;

(ii) The family \(L \) of all Lebesgue measurable subsets of reals is an \(\alpha \)-algebra and the Lebesgue measure is an \(\alpha \)-measure on \(L \).

Throughout, \(X \) will be a T\(_1\) space and \(\mathcal{G} \) will denote the family of all open subsets of \(X \). The intersection of all \(\alpha \)-algebras in \(X \) containing \(\mathcal{G} \) is again an \(\alpha \)-algebra in \(X \) containing \(\mathcal{G} \); it is denoted by \(\mathcal{B}_\alpha \) and called the Borel \(\alpha \)-algebra in \(X \). Clearly, \(\mathcal{B}_\omega \) is then the usual Borel \(\sigma \)-algebra in \(X \). An \(\alpha \)-measure \(\mu \) on \(\mathcal{B}_\alpha \) is called a Borel \(\alpha \)-measure in \(X \) if it is locally finite, e.g., if each \(x \in X \) has a neighborhood \(U \in \mathcal{B}_\alpha \) with \(\mu(U) < +\infty \).

A set \(A \subseteq X \) is called \(\gamma \)-Lindelöf if each open cover of \(A \) contains a subcover of cardinality less than \(\gamma \). Thus \(\Omega \)-Lindelöf sets are Lindelöf, and \(\omega \)-Lindelöf sets are compact.
The family of all \textit{closed} \(\gamma \)-Lindelöf subsets of \(X \) is denoted by \(\mathcal{J}_\gamma \). Clearly, \(\mathcal{J}_\gamma \) is the family of all closed subsets of \(X \) whenever \(\gamma > |X| \).

\textbf{Definition 4.} A Borel \(\alpha \)-measure in \(X \) is called

(i) \textit{diffused} if \(\mu(\{x\}) = 0 \) for each \(x \in X \);

(ii) \(\beta \)-\textit{moderated} if there is an \(A \subseteq \mathcal{G} \) such that \(|A| \leq \beta \),
\[\bigcup A = X, \text{ and } \mu(A) < +\infty \text{ for each } A \in A; \]

(iii) \(\gamma \)-\textit{Radon} if
\[\mu(A) = \sup\{\mu(F) : F \in \mathcal{J}_\gamma, F \subseteq A, \mu(F) < +\infty\} \]
for each \(A \in \mathcal{B}_\alpha \);

(iv) \(\gamma \)-\textit{regular} if it is \(\gamma \)-Radon and
\[\mu(A) = \inf\{\mu(G) : G \in \mathcal{G}, A \subseteq G\} \]
for each \(A \in \mathcal{B}_\alpha \).

The Borel \(\alpha \)-measures which are \(\omega \)-\textit{moderated}, or \(\omega \)-\textit{Radon}, or \(\omega \)-\textit{regular} are usually called \textit{moderated}, or \textit{Radon}, or \textit{regular}, respectively.

\textbf{Discussion of results.} It is clear that a \(\beta \)-\textit{moderated} \(\alpha \)-measure is \(\beta \)-finite, and that a \(\beta \)-finite, \(\gamma \)-\textit{regular} \(\alpha \)-measure is \(\beta \)-\textit{moderated}. On the other hand, a \(\sigma \)-finite Radon measure is generally not moderated (see [4], ex. 7). It is easy to see that a moderated \(\gamma \)-Radon \(\alpha \)-measure is \(\gamma \)-\textit{regular}, yet the converse is false (e.g., giving \(M \) the discrete topology, the measure \(\mu \) from Example 1 is always regular, but not necessarily moderated). We shall show that for a large family of spaces each diffused \(\gamma \)-\textit{regular} \(\alpha \)-measure with \(\alpha \geq \gamma \) is moderated and hence \(\sigma \)-finite. Thus typically a non-\(\sigma \)-finite, \(\gamma \)-Radon \(\alpha \)-measure is not \(\gamma \)-\textit{regular}. We shall
prove, however, that a β-finite, γ-Radon α-measure with $\alpha > \beta$ and $\alpha \geq \gamma$ is β-moderated whenever the space X is meta-β-Lindelöf (see Definition 5, (i)). Under a mild set theoretic restriction, we shall also prove that in a metacompact space each β-finite, Borel α-measure with $\alpha > \beta$ is β-moderated.

Sometimes many properties of a Borel α-measure can be deduced from the well-known facts about the usual σ-additive Borel measures. To this end, we shall show that each moderated, γ-Radon α-measure is a restriction of a complete Borel measure. We shall also prove that each γ-Radon α-measure with $\alpha > \gamma^\omega$ degenerates to a measure from Example 1.

Proposition 1. Let $\alpha \geq \gamma$ and let μ be a γ-Radon α-measure in X. Then there is a disjoint family $\mathcal{C} \subset \mathcal{F}_{\gamma}$ such that

(i) If $C \in \mathcal{C}$, then $C \neq \emptyset$, $\mu(C) < +\infty$, and $\mu(C \cap G) > 0$ for each $G \in \mathcal{G}$ with $C \cap G \neq \emptyset$;

(ii) If $B \in \mathcal{B}_\alpha$, then

$$\mu(B) = \sum \{\mu(B \cap C) : C \in \mathcal{C}\}.$$

Proof. By Zorn's lemma there is a maximal disjoint family $\mathcal{C} \subset \mathcal{F}_{\gamma}$ satisfying condition (i). Let $B \in \mathcal{B}_\alpha$. Since \mathcal{C} is disjoint,

$$\mu(B) \geq \sum \{\mu(B \cap C) : C \in \mathcal{C}\}.$$

We shall prove the reverse inequality in three steps.

(a) Let $B \cap C = \emptyset$ for each $C \in \mathcal{C}$ and suppose that $\mu(B) > 0$. Then there is an $F \in \mathcal{F}_{\gamma}$ with $F \subset B$ and $0 < \mu(F) < +\infty$. If

$$H = \cup \{F \cap G : G \in \mathcal{G}, \mu(F \cap G) = 0\},$$

then H is open in F and $\mu(E) = 0$ for each γ-Lindelöf set.
E ∈ H. Since μ is γ-Radon, μ(H) = 0. Letting C₀ = F - H, we have C₀ ∈ \(J_γ \) and μ(C₀) = μ(F). In particular, C₀ ≠ ∅ and μ(C₀) < +∞. By the definition of H, μ(C₀ ∩ G) > 0 for each G ∈ \(J_γ \) with C₀ ∩ G ≠ ∅. It follows that \(C \cup \{ C₀ \} \) is a disjoint subfamily of \(J_γ \) satisfying condition (i); a contradiction.

(b) Let B ∈ \(J_γ \). By the local finiteness of μ, there is an open cover \(\mathcal{U} \) of B such that |\(\mathcal{U} \)| < γ and μ(U) < +∞ for each U ∈ \(\mathcal{U} \). Since C is disjoint, and since μ(C ∩ U) > 0 whenever C ∈ C, U ∈ \(\mathcal{U} \), and C ∩ U ≠ ∅, the family \(\{ C ∈ C : C ∩ U ≠ ∅ \} \) is countable for each U ∈ \(\mathcal{U} \). Thus

\[
|\{ C ∈ C : B ∩ C ≠ ∅ \}| < γ⋅ω = γ ≤ α,
\]

and by (a),

\[
μ(B) = Σμ(B ∩ C) : C ∈ C.
\]

(c) Let B ∈ \(β_α \). By (b), for each F ∈ \(J_γ \) with F ⊆ B,

\[
μ(F) = Σμ(F ∩ C) : C ∈ C ≤ Σμ(B ∩ C) : C ∈ C.
\]

Since μ is γ-Radon, also

\[
μ(B) ≤ Σμ(B ∩ C) : C ∈ C.
\]

In case of α = ω and γ = ω, a version of Proposition 1 was proved by N. Bourbaki and R. Godement, who called the family C a \(μ\)-concassage (see [13], p. 46).

A set A ⊆ X is called locally countable if each x ∈ X has a neighborhood U with |A ∩ U| ≤ ω.

Theorem 1. Let α > γ and let each uncountable locally countable set A ⊆ X contain an uncountable subset B ∈ \(β_α \). If μ is a diffused, γ-regular α-measure in X, then μ is moderated.

Proof. Let C be the family from Proposition 1. If C
is countable, then μ is σ-finite and thus by γ-regularity, also moderated. Hence assume that C is uncountable, for each $C \in C$ choose $x_C \in C$, and let $A = \{x_C: C \in C\}$. It follows from Proposition 1 and the local finiteness of μ that A is locally countable. According to our assumptions, we can find an uncountable set $B \subseteq A$ with $B \not= \emptyset$. Let $F \subseteq J_\gamma$ and $F \subseteq B$. Since F can be covered by less than γ open sets of finite measures, it follows from Proposition 1 that $|\{C \in C: C \cap F \not= \emptyset\}| < \gamma \cdot \omega = \gamma$. Consequently, $|F| < \gamma \leq \alpha$. Since μ is a diffused α-measure, $\mu(F) = 0$. By the γ-regularity of μ, $\mu(B) = 0$ and there is a $G \in \mathcal{G}$ such that $B \subseteq G$ and $\mu(G) < +\infty$. For each $x_C \in B$, we have $\mu(C \cap G) > 0$. Since B is uncountable and C is disjoint, this implies that $\mu(G) = +\infty$; a contradiction.

Next we shall show that the condition from Theorem 1 is satisfied by a large collection of familiar spaces.

Let M be a set, and let $A \subseteq \text{exp} M$. For $x \in M$, set $o(x, A) = |\{A \in A: x \in A\}|$ and let $o(A)$ be the least cardinal such that $o(x, A) < o(A)$ for each $x \in M$. The cardinal $o(A)$ is called the order of A.

Definition 5. A space X is called

(i) meta-β-Lindelöf if each open cover of X has an open refinement \mathcal{V} with $o(\mathcal{V}) \leq \beta$;

(ii) α-weakly θ-refinable if each open cover of X has an open refinement $\mathcal{V} = \bigcup \{V_t: t \in T\}$ such that $|T| < \alpha$ and for each $x \in X$ there is a $t_x \in T$ with $1 \leq o(x, V_{t_x}) < \omega$.

Clearly, meta-ω-Lindelöf and meta-Ω-Lindelöf spaces are, respectively, metacompact and meta-Lindelöf. Similarly, Ω-weakly θ-refinable spaces are weakly θ-refinable in the sense of [1].

Proposition 2. Let X be α-weakly θ-refinable and let $A \subset X$. If there is a $\beta < \alpha$ such that each $x \in X$ has a neighborhood U with $|A \cap U| \leq \beta$, then $A \in \beta_\alpha$. In particular, if A is locally countable, then $A \in \beta_\alpha$.

Proof. Suppose that there is a $\beta < \alpha$ such that each $x \in X$ has an open neighborhood U_x with $|A \cap U_x| \leq \beta$. Let $V = \bigcup \{V_t : t \in T\}$ be an open refinement of $\{U_x : x \in X\}$ such that $|T| < \alpha$ and for each $x \in X$ there is a $t_x \in T$ with

$$l \leq o(x, V_{t_x}) < \omega.$$

Since the sets $\{x \in X : o(x, V_t) \geq n\}$, $t \in T$, $n = 1, 2, \ldots$, are open, the sets

$$X_{t,n} = \{x \in X : o(x, V_t) = n\}$$

are Borel. Clearly,

$$X = \bigcup \{X_{t,n} : t \in T, n = 1, 2, \ldots\}.$$

Let $W_{t,n}$ consist of all sets $X_{t,n} \cap V_1 \cap \cdots \cap V_n$ where V_1, \ldots, V_n are distinct elements of V_t. Then $W_{t,n}$ is a disjoint family of open (in $X_{t,n}$) subsets of $X_{t,n}$ and $X_{t,n} = \bigcup W_{t,n}$. Moreover,

$$A \cap W = \{x_W^\rho : \rho < \kappa_W\}$$

where $\kappa_W \leq \beta$ for each $W \in W_{t,n}$. Thus the sets

$$A_{t,n,\rho} = \{x_W^\rho : W \in W_{t,n}, \kappa_W > \rho\},$$

$t \in T$, $n = 1, 2, \ldots$, $\rho < \beta$, are closed in $X_{t,n}$, and therefore Borel. We have
A = \bigcup\{A \cap X_{t,n}: t \in T, \ n = 1,2,\ldots\}
= \bigcup_{t \in T} \bigcup_{n=1}^{\infty} \bigcup\{A \cap W: W \in \mathcal{W}_{t,n}\}
= \bigcup_{t \in T} \bigcup_{n=1}^{\infty} \bigcup_{\rho < \beta} A_{t,n,\rho}.

Since |T| < \alpha, \omega < \alpha, \text{ and } \beta < \alpha, \text{ it follows that } A \in \beta_{\alpha}.

The following corollary is a direct consequence of Theorem 1 and Proposition 2.

Corollary 1. Let \(\alpha \geq \gamma \) and let \(X \) be \(\alpha \)-weakly \(\theta \)-refinable. If \(\mu \) is a diffused, \(\gamma \)-regular \(\alpha \)-measure in \(X \), then \(\mu \) is moderated.

Next two examples show that the assumptions of Proposition 2 are essential.

Example 5. For a regular ordinal \(\kappa \geq \Omega \), let \((W, \mathcal{M}, \mu_{\kappa})\) be the \(\kappa \)-measure space \((W, \mathcal{M}, \mu)\) from Example 2.

Claim. Let \(\kappa \geq \Omega \) be a regular ordinal. Then there is a set \(A_{\kappa} \subseteq W_{\kappa} \) such that \(A_{\kappa} \cap W_{\rho} \in \mathcal{M}_{\rho} \) for no regular ordinal \(\rho \in [\Omega, \kappa] \).

Proof. Since \(\Omega \) is not a measurable cardinal (see [14, thm. (A)]), there is a set \(A_{\Omega} \subseteq W_{\Omega} \) for which \(A_{\Omega} \notin \mathcal{M}_{\Omega} \). If \(\rho \in [\Omega, \kappa] \) is a regular ordinal, then each closed cofinal subset of \(W_{\rho} \) contains ordinals cofinal with both \(\omega \) and \(\Omega \). Thus it suffices to let \(A_{\kappa} \) be the union of \(A_{\Omega} \) and the set of all ordinals \(\zeta \in W_{\kappa} \) cofinal with \(\Omega \).

If the cardinal \(\kappa \) is an immediate successor of a cardinal \(\beta \), then \(|A_{\kappa} \cap [0,\zeta]| \leq \beta \) for each \(\zeta \in W_{\kappa} \) and yet \(A_{\kappa} \notin \mathcal{M}_{\kappa} \); for \(\beta_{\kappa} \subseteq \mathcal{M}_{\kappa} \). However, since each \(A \subseteq W_{\kappa} \) contains a discrete subset \(B \) with \(|B| = |A| \), Theorem 1 can be still applied to \(W_{\kappa} \).
Example 6. Let \(\kappa \) be a weakly inaccessible ordinal, i.e., \(\kappa \) is a regular ordinal and \(\kappa = \omega_\tau \) for some limit ordinal \(\tau \) (see [9], chpt. IX, sec. 1, p. 309). With the notation from Example 5, let

\[
X = \{ (\zeta, \eta) \in W_\kappa \times W_\kappa^*: \zeta \leq \eta \}
\]

where \(W_\kappa^* \) is the set \(W_\kappa \) with the discrete topology. Clearly, \(X \) is paracompact. If

\[
A = \{ (\zeta, \eta) \in X: \zeta \in A_\kappa \},
\]

then for each ordinal \(\rho \in [\Omega, \kappa) \),

\[
A \cap (W_{\rho+1} \times \{\rho\}) = (A_\kappa \cap W_{\rho+1}) \times \{\rho\}
\]

and consequently

\[
|A \cap (W_{\rho+1} \times \{\rho\})| < \kappa.
\]

By the claim in Example 5, \(A \in \beta_\alpha \) for no regular cardinal \(\alpha < \kappa \). It follows easily from the weak inaccessibility of \(\kappa \) that \(\cup_{\alpha < \kappa} \beta_\alpha \) is a \(\kappa \)-algebra in \(X \) containing all open sub-sets of \(X \). Therefore, \(\cup_{\alpha < \kappa} \beta_\alpha = \beta_\kappa \) and \(A \notin \beta_\kappa \).

As indicated by Example 5, the condition from Corollary 1 is not necessary. In fact, the following question seems open at this time.

Question. For \(\alpha \geq \gamma \), does there exist a diffused, \(\gamma \)-regular \(\alpha \)-measure which is not moderated?

Lemma 1. Let \((M, \mathcal{M}, \mu) \) be an \(\alpha \)-measure space with \(\mu(M) < +\infty \), and let \(A \subset \mathcal{M} \). If \(\circ(A) < \alpha \) and \(\epsilon > 0 \), then

\[
|\{ A \in A: \mu(A) \geq \epsilon \}| < \max(\circ(A), \Omega).
\]

Proof. (a) Let \(\beta = \circ(A) \), \(\beta < \alpha \), and suppose that there is an \(\epsilon > 0 \) such that the set

\[
A_+ = \{ A \in A: \mu(A) \geq \epsilon \},
\]
has cardinality larger than or equal to \(\max(\beta, \Omega) \). First we shall show that there is a family \(\mathcal{C} \subseteq A_+ \) such that for each countable collection \(\mathcal{D} \subseteq \mathcal{C} \) we can find a \(C \in \mathcal{C} \) with \(\mu(C - \bigcup \mathcal{D}) > 0 \).

(b) If no such family exists, then for each \(\mathcal{C} \subseteq A_+ \) there is a countable \(\mathcal{C}_0 \subseteq \mathcal{C} \) such that \(\mu(C - \bigcup \mathcal{C}_0) = 0 \) for each \(C \in \mathcal{C} \). Let \(\mathcal{C}_1 = A_+ \) and define inductively \(\mathcal{C}_\tau, \tau < \beta \), by setting

\[
\mathcal{C}_\tau = A_+ - \bigcup_{\rho < \tau} \mathcal{C}_{\rho_{a_{\tau}}}
\]

where \(\mathcal{C}_{\rho_{a_{\tau}}} = (\mathcal{C}_{\rho})_{\beta} \). Since \(|\bigcup_{\rho < \tau} \mathcal{C}_{\rho_{a_{\tau}}}| \leq \tau \cdot \omega < \max(\beta, \Omega) \), the families \(\mathcal{C}_\tau \), and consequently \(\mathcal{C}_{\rho_{a_{\tau}}} \), are nonempty for each \(\tau < \beta \). If \(\mathcal{C}_\tau = \bigcup \mathcal{C}_{\rho_{a_{\tau}}} \), then \(\mu(C_{\tau}) \geq \varepsilon \) and \(\mu(C - C_{\tau}) = 0 \) for each \(C \in \mathcal{C}_\rho \) with \(\tau \leq \rho < \beta \). Thus \(\mu(C_{\rho} - C_{\tau}) = 0 \) whenever \(\tau < \rho < \beta \), and we obtain

\[
\mu(\bigcap_{\tau \leq \rho} C_{\tau}) = \mu(C_{\rho}) - \mu(C_{\rho} - \bigcap_{\tau \leq \rho} C_{\tau}) = \mu(C_{\rho}) - \mu(\bigcup_{\tau \leq \rho} (C_{\rho} - C_{\tau})) = \mu(C_{\rho}) > \varepsilon
\]

for each \(\rho < \beta \). Since \(\beta < \alpha \),

\[
\mu(\bigcap_{\tau < \beta} C_{\tau}) = \inf_{\rho < \beta} \mu(\bigcap_{\tau \leq \rho} C_{\tau}) > \varepsilon.
\]

In particular, \(\bigcap_{\tau < \beta} C_{\tau} \neq \emptyset \). If \(\mathcal{C}_{\rho_{a_{\tau}}} = \{A_{\tau}^k : k = 1, 2, \ldots\} \), then

\[
\bigcap_{\tau < \beta} C_{\tau} = \bigcap_{\tau < \beta} \bigcup_{k} A_{\tau}^k = \bigcup_{\{k(\tau)\}} \bigcap_{\tau < \beta} A_{\tau}^{k(\tau)}
\]

where the last union is taken over all transfinite sequences \(\{k(\tau)\}_{\tau < \beta} \) of positive integers. Thus there are positive integers \(k(\tau), \tau < \beta \), and an \(x \in M \) with \(x \in \bigcap_{\tau < \beta} A_{\tau}^{k(\tau)} \). Because the families \(\mathcal{C}_{\rho_{a_{\tau}}} \) are mutually disjoint, \(A_{\rho}^{k(\rho)} \neq A_{\tau}^{k(\tau)} \) whenever \(\rho \neq \tau \). Consequently \(o(x, \mathcal{A}) = \beta \), and this contradiction establishes the existence of the family \(\mathcal{C} \) from (a).

(c) Choose \(E_0 \in \mathcal{C} \) and suppose that for each \(\rho < \tau < \Omega \) we have chosen \(E_{\rho} \in \mathcal{C} \) so that
\[\mu(E_\rho - \bigcup_{\lambda < \rho} E_\lambda) > 0. \]

Since \(\{E_\rho: \rho < \tau\} \) is a countable subfamily of \(C \), there is an \(E_\tau \in C \) such that
\[\mu(E_\tau - \bigcup_{\rho < \tau} E_\rho) > 0. \]

Letting \(F_\tau = E_\tau - \bigcup_{\rho < \tau} E_\rho \), we obtain an uncountable disjoint family \(\{F_\tau: \tau < \Omega\} \subset M \) of sets with positive measures. It follows that \(\mu(M) = +\infty \); a contradiction.

Corollary 2. Let \((M, \mathcal{M}, \mu)\) be an \(\alpha \)-measure space with \(\mu(M) < +\infty \), and let \(A \subset \mathcal{M} \). If \(o(A) < \alpha \) and \(\epsilon > 0 \), then
\[|\{A \in A: \mu(A) \geq \epsilon\}| < \max(o(A), \omega). \]

Proof. In view of Lemma 1, it suffices to consider the case of \(o(A) \leq \omega \). This implies that the set
\[A_+ = \{A \in A: \mu(A) \geq \epsilon\} \]
is countable. If \(\chi_A \) is the characteristic function of a set \(A \subset M \), then
\[\Sigma\{\chi_A(x): A \in A_+\} = o(x, A_+) \]
for each \(x \in M \). Since \(A_+ \) is countable, the function \(x \mapsto o(x, A_+) \) is measurable, and so are the sets
\[M_n = \{x \in M: o(x, A_+) \leq n\}, \]
\(n = 1, 2, \cdots \). The sequence \(\{M_n\} \) is increasing and \(\bigcup_{n=1}^{\infty} M_n = M \); for if \(x \in M \), then
\[o(x, A_+) < o(A) \leq \omega. \]
Thus there is an integer \(p \geq 1 \) such that \(\mu(M - M_p) < \frac{\epsilon}{2} \). We have
\[\Sigma\{\mu(A \cap M_p): A \in A_+\} = \Sigma\{\int_{M_p} \chi_A \ d\mu: A \in A_+\} \leq \int_{M_p} p \ d\mu \]
\[= p \mu(M_p) < +\infty. \]
Because \(\mu(A \cap M_p) \geq \frac{\epsilon}{2} \) for each \(A \in A_+ \), it follows that \(|A_+| < \omega. \)
Example 7. Let $\kappa > \Omega$ be a regular ordinal and let (W, M, u) be the κ-measure space from Example 2. If $A = \{(\rho, \kappa): \rho < \kappa\}$, then $\mu(A) = 1$ for each $A \in A$ and $o(A) = |A| = \kappa$.

Proposition 3. Let $\alpha > \beta$ and let (M, M_1, u) be an α-measure space with $\mu \beta$-finite. If $A \subseteq M$ and $o(A) \leq \beta$, then $|\{A \in A: \mu(A) > 0\}| \leq \beta$.

Proof. Let $M = \cup C$ where $C \subseteq M$, $|C| \leq \beta$, and $u(C) < +\infty$ for each $C \in C$. For $C \in C$ and $A \in M$, let $\mu_C(A) = \mu(A \cap C)$.

Clearly, μ_C is a finite α-measure on M and

$$\mu(A) = \sum_{C \in C} \mu_C(A): C \in C$$

for every $A \in M$. If

$$A_C = \{A \in A: \mu_C(A) > 0\},$$

then

$$A_C = \cup_{n=1}^{\infty} \{A \in A: \mu_C(A) > \frac{1}{n}\}$$

and so by Corollary 2, $|A_C| \leq \omega \cdot \beta = \beta$. Since

$$\{A \in A: \mu(A) > 0\} = \cup \{A_C: C \in C\},$$

the proposition follows.

Letting $\alpha = \Omega$ in Proposition 3, we obtain the following corollary.

Corollary 3. Let (M, M, u) be a measure space with a σ-finite measure μ. If $A \subseteq M$ is a point-finite family, then $\mu(A) = 0$ for all but countably many $A \in A$.

Note. Without proof, Corollary 3 was first communicated to me by Heikki Junnila. Although quite analogous, his proof of Corollary 3 (see [7]) and my proof of Lemma 1 were obtained independently. There is a simple direct proof of Corollary 3
(see [12], chpt. 18, ex. (18-18)), which was found jointly by Don Chakerian and myself.

Theorem 2. Let $\alpha > \beta$, $\alpha \geq \gamma$, and let μ be a β-finite, γ-Radon α-measure in X. If X is meta-β-Lindelöf, then μ is β-moderated.

Proof. If X is meta-β-Lindelöf, then there is an open cover \mathcal{A} of X such that $\sigma(\mathcal{A}) \leq \beta$ and $\mu(U) < +\infty$ for each $U \in \mathcal{A}$. By Proposition 3,

$$|\{U \in \mathcal{A} : \mu(U) > 0\}| \leq \beta.$$

Thus if $\mathcal{A}_0 = \{U \in \mathcal{A} : \mu(U) = 0\}$ and $\mathcal{G} = \cup \mathcal{A}_0$, it suffices to show that $\mu(\mathcal{G}) < +\infty$. Let $F \in J_\gamma$ and $F \subset \mathcal{G}$. There is $V \subset \mathcal{A}_0$ such that $|V| < \gamma$ and $F \subset \cup V$. It follows that $\mu(F) = 0$ and since μ is γ-Radon, also $\mu(\mathcal{G}) = 0$.

Definition 6. A cardinal κ is called measurable if there is a discrete space Y of cardinality κ and a diffused, Borel κ-measure μ in Y with $\mu(Y) = 1$.

The basic properties of measurable cardinals which do not involve axiomatic set theory are proved in [14]; more recent results can be found, e.g., in [2], chpt. 0, sec. 4.

The next lemma is proved by a modified technique of Haydon (see [6], Prop. 3.2).

Lemma 2. Let $\alpha > \beta$ and let μ be a β-finite, Borel α-measure in X. Let $\mathcal{A} \subset \mathcal{G}$ be a point-finite family such that $\mu(U) = 0$ for each $U \in \mathcal{A}$. If X contains no discrete subspace of measurable cardinality, then $\mu(\cup \mathcal{A}) = 0$.

Proof. Let $X = \cup \mathcal{C}$ where $\mathcal{C} \subset \beta_\alpha$, $|\mathcal{C}| \leq \beta$, and $\mu(C) < +\infty$ for each $C \in \mathcal{C}$. Because the sets $\{x \in X : \sigma(x, \mathcal{A}) \geq n\}$,
n = 1, 2, ..., are open, the sets

\[X_n = \{ x \in X : \sigma(x, A) = n \} \]

are Borel. Clearly \(\bigcup X_n = \bigcup_{n=1}^{\infty} X_n \), and so it suffices to show that \(\mu(C \cap X_n) = 0 \) for each \(C \in \mathcal{C} \) and \(n = 1, 2, \ldots \). Fix a \(C \in \mathcal{C} \) and an integer \(n \geq 1 \), and suppose that \(\mu(C \cap X_n) > 0 \).

Consider the family \(V \) of all nonempty sets

\[V = C \cap X_n \cap U_1 \cap \cdots \cap U_n \]

where \(U_1, \ldots, U_n \) are distinct elements of \(A \). Since \(V \) is a disjoint open (in \(C \cap X_n \)) cover of \(C \cap X_n \), we can define an \(\alpha \)-measure \(\nu \) on \(\exp V \) by letting

\[\nu(V') = \frac{\mu(U' \cap X_n)}{\mu(C \cap X_n)} \]

for each \(V' \subset V \). It follows from [2], lemma 0.4.12 that \(V \) contains a family \(V_o \) of measurable cardinality. Choosing \(x_v \in V \) for each \(V \in V_o \) we obtain a discrete subspace \(X_o = \{ x_v : V \in V_o \} \) with \(|X_o| = |V_o| \); a contradiction.

Theorem 3. Let \(\alpha > \beta \) and let \(\mu \) be a \(\beta \)-finite, Borel \(\alpha \)-measure in \(X \). If \(X \) is metacompact and contains no discrete subspace of measurable cardinality, then \(\mu \) is \(\beta \)-moderated.

Proof. Choose a point-finite open cover \(A \) of \(X \) such that \(\mu(U) < +\infty \) for each \(U \in A \). By Proposition 3,

\[| \{ U \in A : \mu(U) > 0 \} | < \beta, \]

and by Lemma 2,

\[\mu(\{ U \in A : \mu(U) = 0 \}) = 0. \]

The theorem follows.

We do not know whether Theorem 3 remains correct if the assumption "\(X \) contains no discrete subspace of measurable cardinality" is relaxed to "\(X \) contains no closed discrete
subspace of measurable cardinality." However, using techniques of Moran (see [11], prop. 4.2) one can show easily that in Theorem 3, instead of assuming that X contains no discrete subspace of measurable cardinality, we may assume that all closed discrete subspaces of X have semi-reducible cardinality (for the definition and basic properties of semi-reducible cardinals see [11], sec. 3).

Note. Using a slightly different technique, Theorems 2 and 3 were proved in [4] for $\alpha = \Omega$ (see [4], Lemma 3 and Remark 2).

Let μ be a Borel α-measure. Since the Borel σ-algebra $\beta = \beta_\Omega$ is contained in β_α, we can define a measure space $(X, \overline{\beta}, \overline{\mu})$ as the usual completion of the measure space (X, β, μ) (see [5], sec. 13, p. 55). The measure space $(X, \overline{\beta}, \overline{\mu})$ is said to be associated with the Borel α-measure μ.

Proposition 4. Let μ be a Borel α-measure in X and let $(X, \overline{\beta}, \overline{\mu})$ be the measure space associated with μ. If μ is moderated and γ-Radon with an arbitrary γ, then $\beta_\alpha \subset \beta$ and $\overline{\mu}(A) = \mu(A)$ for each $A \in \beta_\alpha$.

Proof. (a) Let $A \in \beta_\alpha$ and suppose that $A \subset H$ for some $H \in \mathcal{G}$ with $\mu(H) < +\infty$. Then
\[
\mu(A) = \sup\{\mu(F) : F \in \mathcal{J}_\gamma, F \subset A\} = \inf\{\mu(G) : G \in \mathcal{G}, A \subset G\}.
\]
Thus there is an F_δ set F_δ and a G_δ set G_δ such that $F_\delta \subset A \subset G_\delta$ and $\mu(F_\delta) = \mu(A) = \mu(G_\delta) < +\infty$. It follows that $A = F_\delta \cup (A - F_\delta)$ belongs to $\overline{\beta}$ and that $\overline{\mu}(A) = \overline{\mu}(F_\delta) = \mu(F_\delta) = \mu(A)$.
(b) Let $A \in \mathcal{B}_\alpha$ be arbitrary. Since μ is moderated,
$X = \bigcup_{n=1}^{\infty} B_n$ where $H_n \in \mathcal{G}$ and $\mu(H_n) < +\infty$, $n = 1, 2, \ldots$. By (a), $A \cap H_n \in \mathcal{B}$ and $\overline{\mu}(A \cap H_n) = \mu(A \cap H_n)$, $n = 1, 2, \ldots$. Consequently, $A \in \mathcal{B}$ and $\overline{\mu}(A) = \mu(A)$.

The following theorem generalizes an unpublished result of Gary Gruenhage.

Theorem 4. Let μ be a γ-Radon α-measure in X. If $\alpha > \prod_{n=1}^{\infty} \gamma_n$ whenever $\gamma_n < \gamma$, $n = 1, 2, \ldots$, then

$$\mu(B) = \sum_{x \in B} \mu(\{x\})$$

for each $B \in \mathcal{B}_\alpha$.

Proof. (a) Let X be γ-Lindelöf and let $\mu(X) < +\infty$. For each $x \in X$ and $n = 1, 2, \ldots$, choose an $F_{x,n} \in \mathcal{G}$ such that

$$F_{x,n} \subseteq X - \{x\}$$

and

$$\mu(F_{x,n}) > \mu(X - \{x\}) - \frac{1}{n}.$$

Each open cover $\{X - F_{x,n} : x \in X\}$ of X has a subcover U_n with

$$|U_n| < \gamma,$$

$n = 1, 2, \ldots$. Since $\mu(X) < +\infty$, the set $A = \{x \in X : \mu(\{x\}) > 0\}$ is countable, and since

$$\mu(X - F_{x,n}) < \mu(\{x\}) + \frac{1}{n}$$

for each $x \in X$, $\mu(U - A) < \frac{1}{n}$ for each $U \in U_n$. Thus

$$\mu(\cap_{n=1}^{\infty} (U_n - A)) = 0$$

for every sequence $\{U_n\}$ with $U_n \in U_n$, $n = 1, 2, \ldots$. We have

$$X - A = \cap_{n=1}^{\infty} \cup\{U - A : U \in U_n\} = \cup\{U_n\} \cap_{n=1}^{\infty} (U_n - A)$$

where the last union is taken over all sequences $\{U_n\}$ with $U_n \in U_n$, $n = 1, 2, \ldots$. Because $|U_n| < \gamma$, the collection of all these sequences has the cardinality less than α. Consequently, $\mu(X - A) = 0$ and
\[
\mu(B) = \mu(A \cap B) = \Sigma\{\mu(\{x\}) : x \in A \cap B\}
\]
\[
= \Sigma\{\mu(\{x\}) : x \in B\}
\]

for each \(B \in \beta^\alpha\).

(b) Let \(X\) and \(\mu\) be arbitrary, and let \(B \in \beta^\alpha\). There are \(F_n \in \mathcal{F}_\gamma\) such that \(F_n \subset F_{n+1} \subset B\), \(\mu(F_n) < +\infty\), \(n = 1, 2, \ldots\), and \(\lim \mu(F_n) = \mu(B)\). Using (a), we obtain
\[
\mu(B) = \lim \Sigma\{\mu(\{x\}) : x \in F_n\}
\]
\[
= \Sigma\{\mu(\{x\}) : x \in \bigcup_{n=1}^{\infty} F_n\} \leq \Sigma\{\mu(\{x\}) : x \in B\}
\]
The equality holds trivially when \(\mu(B) = +\infty\). If \(\mu(B) < +\infty\), then \(\mu(B - \bigcup_{n=1}^{\infty} F_n) = 0\) and the equality holds again.

Remark. The cardinality assumption in Theorem 4 is clearly satisfied when \(\alpha > \gamma^\omega\). However, this later condition is generally stronger. For example, choose infinite cardinals \(\kappa^\rho\) so that \(2^{\kappa^\rho} < 2^{\kappa^{\tau}}\) for each \(\rho < \tau < \omega\), and let \(\gamma = \sup\{2^{\kappa^\rho} : \rho < \omega\}\). If \(\gamma_n < \gamma\), \(n = 1, 2, \ldots\), then \(\gamma_n \leq 2^{\kappa^\rho}\) for some \(\rho < \omega\), and consequently
\[
\prod_{n=1}^{\infty} \gamma_n \leq 2^{\kappa^\rho \omega} = 2^{\omega \cdot \kappa^\rho} = 2^{\kappa^\rho} < \gamma \leq \gamma^\omega.
\]

We shall close this paper by stating two theorems about \(\alpha\)-measures which for \(\alpha = \omega\) were proved previously by Gardner, Gruenhage, and the author (see [3], corollary to Theorem 6.1, and [4], Theorem 2). Recall that a space \(X\) is:

(i) **hereditarily \(\alpha\)-weakly \(\theta\)-refinable** if each subspace of \(X\) is \(\alpha\)-weakly \(\theta\)-refinable;

(ii) **locally \(\gamma\)-Lindelöf** if each \(x \in X\) has a \(\gamma\)-Lindelöf neighborhood.

Theorem 5. Suppose that \(X\) is a regular, hereditarily \(\alpha\)-weakly \(\theta\)-refinable space which contains no discrete subspace
of measurable cardinality. Let $\alpha > \beta$ and let μ be a β-finite, Borel α-measure in X. Then μ is γ-Radon for each $\gamma > \lvert X \rvert$.

Theorem 6. Suppose that X is a regular, α-weakly θ-refinable, locally γ-Lindelöf space which contains no discrete subspace of measurable cardinality. Let $\alpha > \beta$ and let μ be a β-finite, Borel α-measure in X. Then μ is γ-Radon if and only if it is δ-Radon for some $\delta > \omega$.

Modulo the obvious adjustments, for a finite α-measure μ the proofs of Theorems 5 and 6 are the same as those of Theorem (18.31) in [12] and Theorem 2 in [4], respectively. Since each β-finite α-measure with $\alpha > \beta$ is a sum of finite α-measures (see the proof of Proposition 3), it suffices to observe that a sum of γ-Radon α-measures is also γ-Radon.

References

1. H. R. Bennett and D. J. Lutzer, A note on weak θ-refinability, Gen. Topology Appl. 2 (1972), 49-54.

University of California

Davis, CA 95616