A NOTE ON THE PRODUCT OF
FRECHET SPACES

by

GARY GRUENHAGE
A NOTE ON THE PRODUCT OF FRECHET SPACES

Gary Gruenhage

1. Introduction

A space X is said to be a Frechét space if whenever $x \in A$, there exist $x_n \in A$, $n = 1, 2, \ldots$, with $x_n \to x$. In general, Frechét spaces behave very badly with respect to products. In fact, if X and Y are non-discrete Frechét spaces and $X \times Y$ is Frechét, then a theorem of Michael [5] implies that X and Y must have the following stronger property: if $x \in \bigcap_{n=1}^{\infty} A_n$, where $A_1 \supset A_2 \supset \ldots$, then there exists $x_n \in A_n$ with $x_n \to x$. Spaces satisfying this property are called countably bi-sequential spaces. We should add that even if X and Y are countably bi-sequential, this does not guarantee that $X \times Y$ is Frechét (see [4] or [6]).

In a letter to the author, F. Galvin asked the following question: if X_0, X_1, X_2, \ldots are such that $\prod_{i \leq n} X_i$ is Frechét (equivalently, countably bisequential) for all $n \in \omega$, must $\prod_{i \in \omega} X_i$ be Frechét (equivalently, countably bi-sequential)? Y. Tanaka [8, Problem 2.6] has asked the same question. In this paper, we construct, assuming Martin's Axiom (MA), a Frechét space X such that X^n is Frechét for all $n \in \omega$, but X^ω is not Frechét. The space X is countable, and has only one non-isolated point.

Before proceeding with the construction of the example, we would like to mention some related problems. Bi-sequential spaces [5] are closed under countable products, so the space X we construct is a countable countably bi-sequential space.
which is not bi-sequential. Others (e.g., Galvin [2], Malyhin [4], Olson [6]) have constructed such spaces assuming various axioms of set theory, but no real example has been found. (There are uncountable real examples, e.g., an uncountable \(\mathbb{I} \)-product of the unit interval.) A space \(X \) is called a \(w \)-space if whenever \(x \in A_n \), \(n = 1, 2, \ldots \), there exists \(x_n \in A_n \) with \(x_n \to x \). These spaces were introduced by the author in [3], and defined in terms of an infinite game, but this characterization, due to P. L. Sharma [7], is much better. Clearly, every \(w \)-space is countably bi-sequential, and the difference between the two classes of spaces does not, on the surface, look very large. But the following question, also asked by Galvin, remains open: if \(X_n \) is a \(w \)-space for all \(n \in \omega \), must \(X^\omega \) be a \(w \)-space (or a Fréchet space)? A counterexample to this question would be about as far as one could go in this direction. Call \(X \) a \(c^* \)-space (terminology due to Sharma) if \(X \) has countable tightness and every countable subset of \(X \) is first countable. It is easy to see that if \(X^n \) is a \(c^* \)-space for every \(n \in \omega \), then \(X \) is a \(c^* \)-space. No real example of a space which is a \(w \)-space but not a \(c^* \)-space has been found. However, Galvin [1] has constructed such spaces assuming MA.

2. Construction of the Example

Unless otherwise stated, we use the letters \(m, n, \) and \(k \) to denote natural numbers. The example is based on a construction, by induction on the ordinals less than the continuum \(c \), of a certain collection of almost-disjoint subsets of \(\omega \). To get us past an uncountable stage \(\alpha < c \), we need the
following lemma:

Lemma (MA). Let \(\{ I_\alpha \}_{\alpha < \kappa} \) be a collection of infinite almost-disjoint subsets of \(\omega \). Suppose \(A = \omega^n \times \omega^m \), and \(\{ a(0), a(1), \ldots, a(m-1) \} \subset \kappa \) are such that

1. \(A \subset \omega^n \times \prod_{j<m} I_{a(j)} \)
2. \(A \cap (\prod_{i<n} (\omega \setminus E(i)) \times (\prod_{j<m} I_{a(j)} \setminus F(j))) \neq \emptyset \) whenever
 \[E(i) \text{ is a finite union of the } I_{a} 's, \text{ together with a finite subset of } \omega, \text{ and } F(j) \text{ is a finite subset of } \omega. \]

Then there is a sequence \(\tilde{x}_0, \tilde{x}_1, \ldots \) of elements of \(A \) such that

(i) \(C(\tilde{x}_i) \cap C(\tilde{x}_j) = \emptyset \) whenever \(i \neq j \), where \(C(\tilde{x}) \) is the set of coordinates of \(\tilde{x} \);

(ii) if \(\alpha < \kappa \), then \(I_{\alpha} \cap \{ \pi_i(\tilde{x}_j): i < n, j \in \omega \} \) is finite, where \(\pi_i \) is the projection on the \(i \)th coordinate.

Proof. Let \(P = \{(f,F): f \subset A, F \subset \kappa, \text{ with } f \text{ and } F \text{ finite}\} \). Define \((f,F) < (g,G) \) if and only if

(a) \(f \subset g \) and \(F \subset G \);

(b) if \(\tilde{y} \in g \setminus f \), then \(\tilde{y} \) is an element of \(A \cap (\bigcup_{i<n} (\bigcup_{\alpha \in F} I_{\alpha}) \cup (\bigcup_{x \in f} C(\tilde{x})) \times (\prod_{j<m} I_{a(j)} \setminus \bigcup_{x \in f} C(\tilde{x})) \). So defined, \((P,<) \) satisfies the CCC because there are only countably many possible \(f \) 's, and \((f,F) \) and \((f,G) \) are bounded by \((f,F \cup G) \). For each \(\alpha < \kappa \), and \(i \in \omega \) let \(X_{\alpha,i} = \{(f,F) \in P: |f| > i \text{ and } \alpha \in F\} \). \(X_{\alpha,i} \) is a dense open set in \((P,<) \), so by MA, there is a compatible family \(\{(f_{\alpha,i}, F_{\alpha,i}) \in X_{\alpha,i}: \alpha < \kappa, i \in \omega\} \). Pick \(\tilde{x}_0 \in f_{\alpha(0),i(0)} \). If \(\tilde{x}_0, \tilde{x}_1, \ldots, \tilde{x}_{k-1} \) have been chosen, pick \(\tilde{x}_k \in f_{\alpha(k),i(k)} \setminus \bigcup_{j<k} f_{\alpha(j),i(j)} \). We claim that \(\tilde{x}_0, \tilde{x}_1, \ldots, \) is the desired sequence. If \(j < k \), then since \(\tilde{x}_k \in f_{\alpha(k),i(k)} \setminus \bigcup_{j<k} f_{\alpha(j),i(j)} \), and by the compatibility,
the conclusion of property (b) is satisfied with $\hat{y} = \hat{x}_k$ and $f = f_{a(j),i(j)}$. Hence $C(\hat{x}_j) \cap C(\hat{x}_k) = \emptyset$, and so property (i) of the conclusion of the lemma is satisfied. Now let $\alpha < \kappa$. If $\hat{x}_k \notin f_{a,1}$, then the conclusion of (b) is satisfied with $\hat{y} = \hat{x}_k$ and $F = F_{a,1}$. Since $\alpha \in F_{a,1}$, the first n coordinates of \hat{x}_k miss I_α. Thus (ii) is satisfied, and this completes the proof.

Theorem (MA). There is a countable Fréchet space X such that X^n is Fréchet for all $n \in \omega$, but X^ω is not Fréchet.

Proof. We will construct a countable space X_k for each $k \in \omega$, so that $\prod X_k$ is Fréchet for all $n \in \omega$, but $\prod_{k < n} X_k$ is not Fréchet. We can then take X to be the free union of the X_k's.

To this end, we will construct a sequence $\{\mathcal{I}_n\}_{n \in \omega}$ of collections of infinite subsets of ω such that $\bigcup_{n \in \omega} \mathcal{I}_n$ is a maximal almost-disjoint collection. We then take X_k to be the space $\omega \cup \{\omega\}$ with the points of ω isolated, and a neighborhood of ω is $\omega \cup \{\omega\}$ minus a finite union of elements of $\bigcup_{n \in \omega} \mathcal{I}_j$. It is easy to see that, in the space $\prod X_k$, the point $(\omega, \omega, \ldots) \in \text{Cl}\{(n, n, \ldots): n \in \omega\}$, but no sequence of the type $\{(n_k, n_k, \ldots): k \in \omega\}$ converges to (ω, ω, \ldots). Thus $\prod X_k$ is not a Fréchet space.

We need to construct the \mathcal{I}_k's so that every finite product of the X_k's is Fréchet. First construct $I_k(n)$, $n \in \omega$, so that $\{I_k(n): n \in \omega, k \in \omega\}$ is an almost-disjoint collection of infinite subsets of ω, with the additional property that for each $k \in \omega$ and finite subset F of ω, there is $n \in \omega$ with $F \subseteq I_k(n)$.
For each \(n \in \omega \), let \(A_n = P(\omega^n) \), and let \(A = \bigcup_{n \in \omega} A_n \). Let \(A = \{ A_\alpha : \alpha < c \} \) so that each element of \(A \) appears \(c \) times in the well-ordering. For each \(n \in \omega \), define \(\beta(n) = n \). Now suppose \(I_k(a) \) and \(\beta(a) \) have been defined for all \(\alpha < \kappa \), where \(\omega < \kappa < c \), and \(k \in \omega \). Let \(J(\kappa) = \{ I_k(a) : \alpha < \kappa, k \in \omega \} \). Let \(\beta(\kappa) \) be the least ordinal \(\beta \) such that \(\beta > \beta(a) \) whenever \(\omega < \alpha < \kappa \), and such that \(A_\beta \subseteq \omega^n \) satisfies the following two properties:

(i) there are a set \(J \subseteq \{0,1,\ldots,n-1\} = n \), and \(\{ I_j : j \in J \} \subseteq J(\kappa) \) so that \(A_\beta \subseteq (\prod_{i \in n \setminus J} \omega) \times (\prod_{j \in J} I_j) \);

(ii) \(A_\beta \cap [(\prod_{i \in n \setminus J} \omega \setminus E(i)) \times (\prod_{j \in J} I_j \setminus F(j))] \neq \emptyset \) whenever \(E(i) \) is a finite union of elements of \(J(\kappa) \), and \(F(j) \) is a finite subset of \(\omega \).

Note that \(n \) is uniquely determined by \(A_\beta \), but the set \(J \) depends also on \(\kappa \). Also, such a \(\beta \) always exists since \(\omega \) itself, with \(n = 1 \) and \(J = \emptyset \), satisfies (i) and (ii).

By the lemma, there is a sequence \(x_0, x_1, \ldots \) in \(A_{\beta}(\kappa) \) such that \(C(x_i) \cap C(x_j) = \emptyset \) for \(i \neq j \), and \(I \cap \{ \pi_i(x_k) : k \in \omega, i \in n \setminus J \} \) is finite whenever \(I \in J(\kappa) \). Express \(\omega \) as \(\bigcup_{m \in \omega} W_m \), where \(W_m \) is infinite and \(W_m \cap W_{m'} = \emptyset \) if \(m \neq m' \). Define \(I_m(\kappa) = \{ \pi_i(x_k) : k \in W_m, i \in n \setminus J \} \). The inductive step is now complete.

Let \(J(\kappa) = \{ I_k(a) : \alpha < c \} \), and let \(X_k \) be as defined earlier. We have already shown that \(\prod X_k \) is not Fréchet. It remains to prove that \(\prod X_k \) is Fréchet for each \(n \in \omega \). To this end, suppose \(A \subseteq \prod X_k \), and \(x \in \bigcap A \). We need to show there exists \(x_n \in A \) with \(x_n \to x \). We will prove this for the case \(A \subseteq \omega^n \) and \(x = (\omega, \omega, \ldots, \omega) = \omega^n \), the other cases being trivial or reducible to a case similar to this one.
Let $\mathcal{G} = \bigcup_n \mathcal{G}_n$. Suppose $A \cap (\prod_{i<n} \omega \setminus E(i)) = \emptyset$, where $E(i)$ is a finite union of elements of \mathcal{G}. Then $A \subseteq \bigcup_{i<n} (\omega \times \cdots \times \omega \times E(i) \times \omega \times \cdots \times \omega)$, so there exists $j(0) < n$ and $I_j(0) \in \mathcal{G}$ so that $I_j(0) \subseteq E(j(0))$, and $\omega^n \in \text{Cl}(A(0))$, where $A(0) = A\cap[\omega \times \cdots \times \omega \times I_j(0) \times \omega \times \cdots \times \omega] = A(0) \cap \prod_{i<n} \omega \times I_j(0) \times \omega \times \cdots \times \omega].$ Now suppose $A(0) \cap \{(\prod_{i\in n\setminus\{j(0)\}} \omega \setminus E(i)) \times (I_j(0) \setminus D(j(0))) = \emptyset$, where $E(i)'$ is a finite union of elements of \mathcal{G} and $D(j(0))$ is a finite subset of ω. (We are using the subscript to indicate position in the product, in order to simplify notation.) Then there exists $j(1) \in n\setminus\{j(0)\}$ so that $\omega^n \in \text{Cl}(A(1))$, where $A(1) = A(0) \cap [\omega \times \cdots \times \omega \times I_j(0) \times \omega \times \cdots \times \omega \times I_j(0) \times \omega \times \cdots \times \omega] = A(0) \cap \prod_{i<n\setminus\{j(0), j(1)\}} \omega \times I_j(0) \times \omega \times \cdots \times \omega].$ We continue the process until we have a set $J = \{j(0), \cdots, j(m)\}$ and $A(m) \subseteq (\prod_{i \in n} \omega) \times \prod_{j \in J} I_j$ with $\omega^n \in \text{Cl}(A(m))$ and $A(m) \cap \{(\prod_{i \in n\setminus J \setminus \{j(0), \cdots, j(m)\}} \omega \setminus E(i)) \times (\prod_{j \in J \setminus \{j(0), \cdots, j(m)\}} I_j \setminus F(j)) \neq \emptyset$ whenever $E(i)$ is a finite union of elements of \mathcal{G} and $F(j)$ is a finite subset of ω.

Choose κ_0 large enough so that $\{I_j : j \in J\} \subseteq \mathcal{G}(\kappa_0)$. Now $A(m) = A_{\beta_0}$ for c β's, so choose $\beta_0 > \sup \{\beta(\alpha) : \alpha < \kappa_0\}$ such that $A(m) = A_{\beta_0}$. Then for any $\kappa_0 < \kappa < c$, it is true that $A_{\beta_0} \cap J$, and κ satisfy (i) and (ii) in the above construction of the \mathcal{G}_k's. Thus $\beta_0 = \beta(\kappa)$ for some $\kappa_0 < \kappa < c$, and we have the sequence $\vec{x}_0, \vec{x}_1, \cdots$ in $A_{\beta(\kappa)}$ that we chose in the construction. It is easy to see from the definition of X_i that the set $\{\pi_i(\vec{x}_k) : k \in W_n\}$ converges to ω in X_i for each $i < n$, and since $C(X_j) \cap C(\vec{x}_k) = \emptyset$ for $j \neq k$, then $\{\vec{x}_k : k \in W_n\}$ converges to ω^n. This completes the proof.

Remark. We can get an example with only one non-isolated
point as follows: let Y be the space which is the free union X_k's, with the points "∞" identified to a single point $\hat{\infty}$. Let $\pi: X + Y$ be the projection. Define a neighborhood of $\hat{\infty}$ to be of the form $\pi(U_1 \cup \cdots \cup U_n \cup X_{n+1} \cup X_{n+2} \cup \cdots)$, where U_i is an open set in X_i containing ∞.

References

Auburn University

Auburn, Alabama 36830