A FINITENESS CONDITION IN CG-SHAPE

by

H. L. SHAPIRO AND F. A. SMITH
PARACOMPACTNESS IN UNIFORM SPACES

H. L. Shapiro and F. A. Smith

1. Introduction

If \((X, d)\) is a pseudometric space, a cover \(\mathcal{G} = (G_\alpha)_{\alpha \in I}\) is said to be Lebesgue if there exists a real number \(\delta > 0\) such that for all \(x \in X\), \(B(x, \delta) \subseteq G_\alpha\) for some \(\alpha \in I\). (Of course, \(B(x, \delta) = \{y \in X : d(x, y) < \delta\}\).) Lebesgue covers have been extensively studied and shown themselves to be important in many areas, especially dimension theory (see [4], [7], [9], [10], [11]).

There are at least two ways to generalize Lebesgue covers to more general spaces. A cover \(\mathcal{G}\) of a topological space can be called Lebesgue if there exists a neighborhood \(W\) of the diagonal of \(X\) such that \((W(x))_{x \in X}\) refines \(\mathcal{G}\). This term was used in [1, p. 28]. On the other hand, Smith [10] called a cover \(\mathcal{G}\) of a uniform space \((X, U)\) Lebesgue if there exists a \(U \in U\) such that \((U(x))_{x \in X}\) refines \(\mathcal{G}\). So as to avoid confusion and because it seems more natural we will call these latter covers \(U\)-even. Our motivation comes from Kelley [6] where a cover \(\mathcal{G}\) of a topological space is called even if there exists a neighborhood \(W\) of the diagonal of \(X\) such that \((W(x))_{x \in X}\) refines \(\mathcal{G}\). We will use the term Lebesgue cover only if we are in a pseudometric space.

In [11], Smith studied Lebesgue covers and \(U\)-even covers. He ended this paper by posing two questions:

1. In a metric space \((X, d)\) does every Lebesgue cover have a locally finite Lebesgue refinement?
(2) In a uniform space does every \(U \)-even cover necessarily have a normal sequence of \(U \)-even covers that refine the given cover?
Recently Ščepin ([7]) answered the first question negatively. In this paper we answer the second question positively (see 3.2). We then derive some consequences of this result. We then define \(U \)-paracompact and its generalization and show some of the interesting properties of this concept.

2. Definitions and Elementary Properties

In general we use the notation and terminology as in [1] and [5].

If \(\mathcal{G} = (G_\alpha)_{\alpha \in I} \) and \(\mathcal{H} = (H_\beta)_{\beta \in J} \) are two families of subsets of \(X \) we write \(\mathcal{G} \wedge \mathcal{H} \) for \(\{G_\alpha \cap H_\beta : \alpha \in I \text{ and } \beta \in J\} \). If \(\gamma \) is a cardinal number we say that \(\mathcal{G} \) has power at most \(\gamma \) in case the cardinal number of \(I \) is less than or equal to \(\gamma \).

If \(X \) is a topological space, if \(F \) is a subset of \(X \) and if \(U \) is a neighborhood of the diagonal of \(X \) then we set
\[U(F) = \{y \in X : (x,y) \in U \text{ for some } y \in F\}. \]
If \(F = \{x\} \) we write \(U(x) \) instead of \(U(\{x\}) \). We define \(U \circ U = U^2 = \{(x,y) \in X \times X : \text{there exists } z \in X \text{ with } (x,z) \in W \text{ and } (z,y) \in W\} \).

If \(X \) is a topological space and if \(n \in \mathbb{N} \) we say that a cover \(\mathcal{G} \) is \(n \)-even if there exist neighborhoods \(W_1, \cdots, W_n \) of the diagonal of \(X \) such that \(W_i^2 \subset W_{i-1} \) for \(i = 2, \cdots, n \) and \((W_1(x))_{x \in X} \) refines \(\mathcal{G} \). If there exists a sequence \((W_n)_{n \in \mathbb{N}} \) of neighborhoods of the diagonal of \(X \) such that \(W_n^2 \subset W_{n-1} \) for all \(n \in \mathbb{N} \), \(n \neq 1 \), and \((W_1(x))_{x \in X} \) refines \(\mathcal{G} \) we say that \(\mathcal{G} \) is \(N_0 \)-even. If \(n = 1 \) we write "even" instead of "1-even" and note that this is the usual definition of even.
A sequence \((U_n)_{n \in \mathbb{N}}\) of open covers of a topological space \(X\) is normal if for all \(n \in \mathbb{N}\), \(U_{n+1}^*\) refines \(U_n\) (i.e. \((\text{st}(U_n, U_{n+1})) \subseteq U_{n+1}\) refines \(U_n\)). The cover \(\mathcal{G}\) is normal if there is a normal sequence \((U_n)_{n \in \mathbb{N}}\) of open covers of \(X\) such that \(U_1\) refines \(\mathcal{G}\).

By a uniformity \(\mathcal{U}\) on \(X\) we mean a non-empty collection of subsets of \(X \times X\) satisfying the usual axioms. If \(X\) is a completely regular space we write \(\mathcal{U}_o\) for the universal uniformity on \(X\); i.e. the finest uniformity compatible with the topology on \(X\). If the universal uniformity is the collection of all neighborhoods of the diagonal of \(X\) we will say that \(X\) is strongly collectionwise normal. It is known that if \(X\) is paracompact then \(X\) is strongly collectionwise normal and that strongly collectionwise normal implies collectionwise normal (see [2] and [3]). Furthermore, in general, neither of these implications can be reversed. In [1] Richard A. Alo and the first author proved the following two results.

2.1 Theorem. If \(\mathcal{G}\) is an open cover of a topological space then \(\mathcal{G}\) is normal if and only if \(\mathcal{G}\) is \(K_o\)-even.

2.2 Theorem. A completely regular topological space is strongly collectionwise normal if and only if every even open cover is normal.

A completely regular topological space is almost compact if \(|\beta X - X| \leq 1\). Clearly every compact space is almost compact. There are many characterizations in the literature of almost compact spaces. We list here the following characterization and refer the reader to [5].
2.3 Theorem. A completely regular topological space X is almost compact if and only if X admits a unique uniformity.

3. U-even Covers

Before starting on our main results concerning U-even covers, we state some elementary properties of these covers.

3.1 Lemma. If (X,u) is a uniform space and if G and H are U-even covers of X, then the following statements hold.

(1) If J is a cover of X and if G refines J then J is U-even.

(2) The cover $G \land H$ is U-even.

(3) There is an open U-even cover that refines G.

Proof. The simple proofs of (1) and (2) are omitted. To see that (3) holds, let $U \in U$ such that $(U(x))_{x \in X}$ refines G. Since U is a uniformity, $V = \text{int } U$ is an element of U, so $(V(x))_{x \in X}$ is an open U-even cover that refines G.

We can now show the relationship between the "evenness" and "normality" of a given cover relative to a uniformity.

3.2 Theorem. If (X,u) is a uniform space and if $G = (G_a)_{a \in I}$ is a cover of X then the following statements are equivalent:

(1) The cover G is U-normal.

(2) The cover G is U-even.

Proof. (1) implies (2). If G is U-normal there exists a sequence of open covers $(G_i)_{i \in \mathbb{N}}$ such that for all $i \in \mathbb{N}$ G_i is U-even, G_{i+1}^* refines G_i and G_1 refines G. So, in particular, there exists a U in U such that $(U(x))_{x \in X}$ refines G_1. Since G_1 refines G, 3.1 shows that G is U-even.
(2) implies (1). Since \(\mathcal{G} \) is \(\mathcal{U} \)-even we can choose an open symmetric \(\mathcal{U}_0 \) in \(\mathcal{U} \) such that \(\mathcal{G}_0 = (\mathcal{U}_0(x))_{x \in \mathcal{X}} \) refines \(\mathcal{G} \).

Since \(\mathcal{U} \) is a uniformity there exists an open symmetric element \(\mathcal{U}_1 \) in \(\mathcal{U} \) such that \(\mathcal{U}_1^2 \subseteq \mathcal{U}_0 \). Let \(\mathcal{G}_1 = (\mathcal{U}_1(x))_{x \in \mathcal{X}} \) and note that \(\mathcal{G}_1 \Delta \)-refines \(\mathcal{G}_0 \) since \(\text{st}(x, \mathcal{G}_1) \subseteq \mathcal{U}_0(x) \). Furthermore \(\mathcal{G}_1 \) is \(\mathcal{U} \)-even. We now proceed by induction to construct covers \(\mathcal{G}_n \) so that each \(\mathcal{G}_n \) is a \(\Delta \)-refinement of \(\mathcal{G}_{n-1} \) by simply selecting neighborhoods \(U_2, U_3, \ldots \) of the diagonal of \(\mathcal{X} \) so that \(U_i^2 \subseteq U_{i-1} \) for \(i \geq 2 \). We thus have a sequence \((\mathcal{G}_n)_{n \in \mathbb{N}} \) such that \(\mathcal{G}_{n+1} \) is a \(\Delta \)-refinement of \(\mathcal{G}_{n-1} \). By [1, 1.20], \((\mathcal{G}_{2n})_{n \in \mathbb{N}} \) is a normal sequence of open covers and since each cover is \(\mathcal{U} \)-even the proof is complete.

Since \(\mathcal{U} \)-normal implies normal, we have the following corollary.

3.3 Corollary. If \((\mathcal{X}, \mathcal{U})\) is a uniform space and if \(\mathcal{G} \) is a \(\mathcal{U} \)-even cover of \(\mathcal{X} \), then \(\mathcal{G} \) is normal.

As a result of 3.3 every \(\mathcal{U} \)-even cover has a locally finite cozero-set refinement, however, as was shown by Ščepin in [7] we may not in general choose this refinement to be \(\mathcal{U} \)-even.

Since every \(\mathcal{U} \)-even cover \(\mathcal{G} \) of a uniform space \((\mathcal{X}, \mathcal{U})\) is normal there is a continuous pseudometric associated with it. Using standard techniques it can be shown that this pseudometric is uniformly continuous. Conversely, if we have a uniformly continuous pseudometric associated with a normal cover \(\mathcal{G} \) then \(\mathcal{G} \) has a \(\mathcal{U} \)-normal refinement and hence is \(\mathcal{U} \)-even.

Thus we have the following result.
3.4 Theorem. If \((X, U)\) is a uniform space and if \(\mathcal{G}\) is an open cover of \(X\) then the following statements are equivalent:

(1) The cover \(\mathcal{G}\) is \(U\)-even.

(2) There exists a uniformly continuous pseudometric associated with \(\mathcal{G}\).

We next observe that in a pseudometric space a given cover is Lebesgue if and only if it is \(U\)-even in the pseudometric uniformity. This follows from the fact that sets of the form \(\{(x, y) \in X \times X : d(x, y) < \delta\}\) for all \(\delta > 0\) are a basis for this uniformity.

3.5 Proposition. Suppose that \((X, d)\) is a pseudometric space, that \(U\) is the pseudometric uniformity and that \(\mathcal{G}\) is a cover of \(X\). Then the following statements are equivalent:

(1) The cover \(\mathcal{G}\) is Lebesgue (in \((X, d)\)).

(2) The cover \(\mathcal{G}\) is \(U\)-even (in \((X, U)\)).

We next show that in a pseudometric space every Lebesgue cover is \(K_0\)-even but the converse need not hold.

3.6 Proposition. Suppose that \((X, d)\) is a pseudometric space and that \(\mathcal{G}\) is an open cover of \(X\). If \(\mathcal{G}\) is Lebesgue then \(\mathcal{G}\) is \(K_0\)-even.

Proof. By hypothesis \(\mathcal{G}\) is Lebesgue so there exists \(\delta > 0\) such that \((B_d(x, \delta))_{x \in X}\) refines \(\mathcal{G}\). Suppose that \(\delta < 1\) and for each \(n \in \mathbb{N}\) let \(U_n = \{(x, y) \in X \times X : d(x, y) < \delta/2^n\}\). Then \(U_n^2 \subset U_{n+1}\) and \((U_n(x))_{x \in X}\) refines \(\mathcal{G}\) so \(\mathcal{G}\) is \(K_0\)-even.

3.7 Example. Let \(X\) be the open interval \((0,1)\) with the
usual metric \(m \) and let \(\mathcal{U} \) be the uniformity generated by \(m \).
For each \(n \in \mathbb{N} \) let \(G_n = (1/n+2,1/n) \) and let \(\mathcal{G} = (G_n)_{n \in \mathbb{N}} \).
Then \(\mathcal{G} \) is a countable star-finite normal open cover. Hence by 2.1 \(\mathcal{G} \) is \(\mathbb{N}_0 \)-even. But \(\mathcal{G} \) is not Lebesgue and therefore by 3.5, \(\mathcal{G} \) is not \(\mathcal{U} \)-even.

Suppose that \((X,m) \) is a pseudometric space and that \(\mathcal{G} \) is an open cover. In a pseudometric space every open cover has a locally finite cozero-set refinement and hence every open cover is normal. It follows that \(\mathcal{G} \) is \(\mathbb{N}_0 \)-even. But as we saw above \(\mathcal{G} \) need not be \(\mathcal{U} \)-even (where \(\mathcal{U} \) is the pseudometric uniformity on \(X \)) or equivalently, \(\mathcal{G} \) need not be Lebesgue. Since \(\mathcal{G} \) is normal there exists a continuous pseudometric \(d \) associated with \(\mathcal{G} \) such that \((B_d(x,1/2^k))_{x \in X} \) refines \(\mathcal{G} \). We now give sufficient conditions on \(d \) in order that \(\mathcal{G} \) be Lebesgue.

3.8 Theorem. Suppose that \((X,m) \) is a pseudometric space and that \(\mathcal{G} \) is an open cover of \(X \). If there exists a continuous pseudometric \(d \) associated with \(\mathcal{G} \) such that \(d \preceq m \) then \(\mathcal{G} \) is Lebesgue (in \((X,m) \)).

Proof. Since \(d \) is associated with \(\mathcal{G} \), \((B_d(x,1/2^k))_{x \in X} \) refines \(\mathcal{G} \). We show that \((B_m(x,1/2^k))_{x \in X} \) refines \(\mathcal{G} \). If \(y \in B_m(x,1/2^k) \) then \(m(x,y) < 1/2^k \). Therefore \(d(x,y) \leq m(x,y) < 1/2^k \) so \(y \in B_d(x,1/2^k) \) and hence \((B_m(x,1/2^k))_{x \in X} \) refines \(\mathcal{G} \).

4. The Main Results

We are now ready to introduce the concepts of \(\mathcal{U} \)-paracompact and \(\mathcal{U} \)-collectionwise normal in the context of uniform spaces.
4.1 Definition. Let \((X, \mathcal{U})\) be a uniform space.

(1) Suppose that \(\gamma\) is a cardinal number not necessarily infinite. We say that \((X, \mathcal{U})\) is \(\mathcal{U}\text{-paracompact}\) if every open cover of power at most \(\gamma\) is \(\mathcal{U}\)-even. Furthermore, we say that \((X, \mathcal{U})\) is \(\mathcal{U}\text{-collectionwise normal}\) if for every family \(\{F_a\}_{a \in I}\) of discrete closed subsets of \(X\) of power at most \(\gamma\), there is a \(U \in \mathcal{U}\) such that \(\bigcup\{U(F_a)\}_{a \in I}\) is a pairwise disjoint family of subsets of \(X\).

(2) We say that \((X, \mathcal{U})\) is \(\mathcal{U}\text{-paracompact}\) (respectively, \(\mathcal{U}\text{-\(\gamma\)}\text{-paracompact}\)) if the space is \(\mathcal{U}\text{-paracompact}\) for every (respectively, every finite) cardinal number \(\gamma\). Furthermore, we say that \((X, \mathcal{U})\) is \(\mathcal{U}\text{-collectionwise normal}\) (respectively, \(\mathcal{U}\text{-\(\gamma\)}\text{-collectionwise normal}\)) if the space is \(\mathcal{U}\text{-collectionwise normal}\) for every (respectively, every finite) cardinal number \(\gamma\).

Let us point out here that \(\mathcal{U}\text{-paracompact}\) and \(\mathcal{U}\text{-collectionwise normal}\) are of special significance in the case that \(\gamma = 2\) or \(\aleph_0\). In [8] we investigated the properties of even and \(n\)-even covers. In general, these were not \(\mathcal{U}\)-even. However, many of the techniques used there can be modified and generalized to give similar results. Wherever needed we will assume that this has been done.

In this section we will present several results showing the relationship between \(\mathcal{U}\text{-paracompact}\) and \(\mathcal{U}\text{-collectionwise normal}\). In particular we will show that \(\mathcal{U}\text{-paracompact}, \mathcal{U}\text{-\(\gamma\)}\text{-paracompact}, \mathcal{U}\text{-collectionwise normal}\) and \(\mathcal{U}\text{-\(\gamma\)}\text{-collectionwise normal}\) are all equivalent. We will also show some of the connections to paracompact and present examples to show
that $\mathcal{U}^\mathcal{V}$-paracompact and \mathcal{U}-paracompact are not equivalent and that \mathcal{U}-paracompactness in one (in particular, the universal) uniformity does not imply \mathcal{U}-paracompactness in other uniformities.

First we will present some elementary properties of $\mathcal{U}^\mathcal{V}$-paracompactness and $\mathcal{U}^\mathcal{V}$-collectionwise normality and examine them in some familiar classes of topological spaces. At the outset let us observe the following which shows the similarity to paracompactness on subspaces and in particular on closed subspaces.

4.2 Theorem. If (X,\mathcal{U}) is a $\mathcal{U}^\mathcal{V}$-paracompact uniform space, then every closed uniform subspace is $\mathcal{U}^\mathcal{V}$-paracompact.

Proof. Let S be a closed uniform subspace of X and let $A = (A_\alpha)_{\alpha \in I}$ be an open cover of S of power at most γ. For each $\alpha \in I$, there is an open subset B_α of X such that $B_\alpha \cap S = A_\alpha$. Let $\mathcal{G} = (G_\alpha)_{\alpha \in I}$ be defined as follows: choose β in I arbitrary, set $G_\alpha = B_\alpha$ if $\alpha \neq \beta$ and set $G_\beta = B_\beta \cup (X - S)$. Then \mathcal{G} is an open cover of X of power at most γ with the property that $G_\alpha \cap S = A_\alpha$. By hypothesis X is $\mathcal{U}^\mathcal{V}$-paracompact, so \mathcal{G} is \mathcal{U}-even, i.e. there is a $U \in \mathcal{U}$ such that $(U(x))_{x \in X}$ refines \mathcal{G}. Let $V = U \cap (S \times S)$. Clearly $V \in \mathcal{U}\mid S$ and for each x in S, $V(x) = \{ y \in S: (x,y) \in V \} \subset U(x) \cap S \subset (G_\alpha \cap S) = A_\alpha$ for some $\alpha \in I$. Thus $(V(x))_{x \in X}$ refines A and S is $\mathcal{U}^\mathcal{V}$-paracompact.

Note that in the preceding proof if γ is an infinite cardinal number we can construct the cover $\mathcal{G} = (B_\alpha)_{\alpha \in I} \cup (X - S)$ so that A and \mathcal{G} will have the same power.
4.3 Corollary. If \((X, U)\) is a uniform space that is \(U\)-paracompact (respectively, \(U^2\)-paracompact; respectively, \(U^T\)-paracompact) then every closed uniform subspace of \(X\) is \(U\)-paracompact (respectively, \(U^2\)-paracompact; respectively, \(U^T\)-paracompact).

4.4 Theorem. If \((X, U)\) is a uniform space and if \(\gamma\) is a cardinal number then the following statements are equivalent:

1. Every subspace of \(X\) is \(U^\gamma\)-paracompact.
2. Every open subspace of \(X\) is \(U^\gamma\)-paracompact.

Proof. We need only show (2) implies (1). Let \(S\) be a subspace of \(X\) and let \((A_a)_{a \in I}\) be an open cover of \(S\) of power at most \(\gamma\). For all \(a \in I\) there exists \(B_a\) open in \(X\) such that \(B_a \cap S = A_a\). Let \(B = \bigcup_{a \in I} B\) and note that \((B_a)_{a \in I}\) is an open cover of the open subspace \(B\) of power at most \(\gamma\). Hence there exists \(U \in \mathcal{U}\) such that \((U(x))_{x \in B}\) refines \((B_a)_{a \in I}\) (on \(B\)). Let \(V = U \cap (S \times S)\) and note that \(V \in \mathcal{U}\) such that \((V(x))_{x \in X}\) refines \((A_a)_{a \in I}\).

The previous results did not require \(\gamma\) to be an infinite cardinal but we now will restrict ourselves to the case where \(\gamma\) is not finite.

4.5 Theorem. Suppose that \((X, U)\) is a uniform space. If \((X, U)\) is \(U\)-paracompact then \(X\) is paracompact.

Proof. If \(\mathcal{G}\) is an open cover of \(X\) then by definition there exists an element \(U\) in \(\mathcal{U}\) such that \((U(x))_{x \in X}\) refines \(\mathcal{G}\). Since \(U\) is a neighborhood of the diagonal of \(X\) we have that every open cover is even and therefore \(X\) is paracompact.
The preceding result used the fact that a space is para-
compact if and only if every open cover is even. If \(\gamma \) is an
infinite cardinal number it does not appear to be known if \(X \)
is \(\gamma \)-paracompact if and only if every open cover of power at
most \(\gamma \) is even. However we do have the following.

4.6 Theorem. Suppose that \(X \) is a normal topological
space and that \(\gamma \) is an infinite cardinal number. If \(X \) is
\(\gamma \)-paracompact then every open cover of power at most \(\gamma \) is
even.

Proof. The result follows from the fact that in a normal
space every locally finite open cover is normal and hence
even.

In the case that \(\gamma \) is \(K_\alpha \) we can sharpen the above result
as follows.

4.7 Theorem. If \(X \) is a topological space then the fol-
lowing statements are equivalent:

(1) The space \(X \) is countably paracompact and normal.
(2) Every countable open cover of \(X \) is \(K_\alpha \)-even.
(3) Every countable open cover of \(X \) is 3-even.

Proof. (1) implies (2). If \(\mathcal{G} \) is a countable open cover
of \(X \) then, since \(X \) is countably paracompact, \(\mathcal{G} \) has a locally
finite open refinement \(\mathcal{H} \). Since \(X \) is normal \(\mathcal{H} \) is normal and
therefore \(K_\alpha \)-even.

(2) implies (3). This implication is clear.

(3) implies (1). If \(\mathcal{G} \) is a countable open cover then,
by (3), \(\mathcal{G} \) is 3-even and therefore by [8, Theorem 3.7] \(\mathcal{G} \) has
a locally finite even refinement and hence \(X \) is countably
190 Shapiro and Smith

paracompact.

We now show that X is normal. By [1, Theorem 11.7] it will suffice to show that every countable locally finite open cover $(G_n)_{n \in \mathbb{N}}$ has a refinement $(F_n)_{n \in \mathbb{N}}$ such that $\text{cl } F_n = G_n$ for all $n \in \mathbb{N}$. But this follows immediately from [8, Theorem 3.6].

Thus we again see the special role of ω_0 in the study of properties of families of subsets of varying cardinalities in topology. As contrasted with Theorem 4.7 the next theorem shows that a converse to Theorem 4.6 can be obtained in the class of strongly collectionwise normal spaces.

4.8 Theorem. If X is a strongly collectionwise normal topological space and if γ is an infinite cardinal number then the following statements are equivalent:

(1) The space X is γ-paracompact.

(2) Every open cover of power at most γ is even.

Proof. By 4.6, (1) implies (2). To prove (2) implies (1), let \mathcal{G} be an open cover of power at most γ. By (2) \mathcal{G} is even and hence by 2.2 \mathcal{G} is normal. Since a normal open cover has a locally finite open refinement the proof is complete.

4.9 Corollary. If X is a completely regular topological space and if \mathcal{U}_ω is the universal uniformity on X then X is \mathcal{U}_ω-paracompact if and only if X is paracompact.

Proof. If X is \mathcal{U}_ω-paracompact then, by 4.5, X is paracompact. Conversely, if \mathcal{G} is an open cover of the paracompact space X, then \mathcal{G} is even. So there exists a neighborhood W of
the diagonal of X such that $(W(x))_{x \in X}$ refines \mathcal{G}. But X is paracompact so X is strongly collectionwise normal. Hence W is an element of the universal uniformity. It follows that X is U_0-paracompact.

Since a compact space has a unique uniformity it follows from the above and the fact that a compact space is paracompact that every compact space is U-paracompact. Actually a paracompact almost compact space is U-paracompact for every (one!) admissible uniformity U. In 4.13 we will show the converse of this statement but first we present an example which shows that neither paracompact nor U_0-paracompact implies U-paracompact for an arbitrary uniformity.

4.10 Example. Suppose that X is an infinite discrete topological space and that U_0 is the universal uniformity. Then X is paracompact and therefore by 4.3, X is U_0-paracompact. Moreover X is not almost compact so there is a uniformity U compatible with the topology on X such that $U \neq U_0$. We show that X is not U-paracompact.

Let $\mathcal{G} = \{\{x\}\}_{x \in X}$ and observe that \mathcal{G} is an open cover of X. If \mathcal{G} is U-even then there is a $U \in U$ such that $(U(x))_{x \in X}$ refines \mathcal{G}. This implies that $U(x) = \{x\}$ and $U = \{(x,x) \in X \times X : x \in X\}$ whence $U = U_0$, a contradiction. Thus \mathcal{G} is not U-even so X is not U-paracompact.

We will now sharpen the relationship between compact, U-paracompact and almost compact but first we must show the relationship to completeness.
4.11 Theorem. If \((X, \mathcal{U})\) is a \(\mathcal{U}\)-paracompact uniform space then \((X, \mathcal{U})\) is complete.

Proof. Suppose that there exists a Cauchy filter \(\mathcal{J}\) with no cluster point. Thus for all \(x \in X\) there exists \(U_x \in \mathcal{U}\) and \(A_x \in \mathcal{J}\) such that \(A_x \cap U_x(x) = \emptyset\). Let \(A = (U_x(x))_{x \in X}\). Then \(A\) is a cover of \(X\). Since \(X\) is \(\mathcal{U}\)-paracompact there exists \(V \in \mathcal{U}\) such that \((V(x))_{x \in X}\) refines \(A\). Now \(\mathcal{J}\) is a Cauchy filter, hence there exists \(F \in \mathcal{J}\) such that \(F \times F \subseteq V\). Let \(x \in F\) be fixed. Then \(F \subseteq V(x)\). Also \((V(x))_{x \in X}\) refines \(A\) so there exists \(y \in X\) such that \(V(x) \subseteq U_y(y)\). Thus \(F \subseteq U_y(y)\). Since \(U_y(y) \cap A_y = \emptyset\) we have that \(F \cap A_y = \emptyset\), a contradiction.

If \(\mathcal{U}\) is the universal uniformity then 4.9 and the above yields the following known result.

4.12 Corollary. A paracompact space is complete in its universal uniformity.

4.13 Theorem. A uniform space \((X, \mathcal{U})\) is compact if and only if it is \(\mathcal{U}\)-paracompact and almost compact.

Proof. From the discussion after 4.9 we have that a compact space is \(\mathcal{U}\)-paracompact and almost compact. Conversely, if \((X, \mathcal{U})\) is \(\mathcal{U}\)-paracompact then \((X, \mathcal{U})\) is complete (4.11) and it is easy to see that a complete almost compact space is compact.

4.14 Remark. Clearly \(\mathcal{U}\)-paracompact implies \(\mathcal{U}^\gamma\)-paracompact for every infinite cardinal number \(\gamma\) and this implies \(\mathcal{U}^\omega\)-paracompact, \(\mathcal{U}^\tau\)-paracompact, and \(\mathcal{U}^2\)-paracompact. Moreover, \(\mathcal{U}^\tau\)-paracompact does not in general imply \(\mathcal{U}\)-paracompact. However, we will show that \(\mathcal{U}^\tau\)-paracompact and \(\mathcal{U}^2\)-paracompact
are equivalent. In order to do this we need to investigate the relationship between \mathcal{U}^γ-paracompactness and \mathcal{U}^γ-collectionwise normality in further detail so we now proceed to investigate \mathcal{U}^γ-collectionwise normal spaces.

4.15 Theorem. Suppose that (X, \mathcal{U}) is a completely regular uniform space and that γ is a cardinal number. If (X, \mathcal{U}) is \mathcal{U}^γ-paracompact then X is \mathcal{U}^γ-collectionwise normal.

Proof. Suppose that $\mathcal{J} = (F_\alpha)_{\alpha \in I}$ is a discrete family of closed subsets of X of power at most γ. For each $\alpha \in I$ let $G_\alpha = \bigcup_{\zeta \in I, \zeta \neq \alpha} F_\zeta$ and let $\mathcal{G} = (G_\alpha)_{\alpha \in I}$. Since \mathcal{J} is discrete it follows that G_α is open for each $\alpha \in I$. Thus \mathcal{G} is an open cover of X. Since X is \mathcal{U}^γ-paracompact there exists an open symmetric \mathcal{W}_1 in \mathcal{U} such that $(\mathcal{W}_1(x))_{x \in X}$ refines \mathcal{G}. Furthermore, since \mathcal{U} is a uniformity there exists an open symmetric \mathcal{W}_2 in \mathcal{U} such that $\mathcal{W}_2(x) \subseteq \mathcal{W}_1(x)$ and for each $\alpha \in I$ set $H_\alpha = st(F_\alpha, \mathcal{W}_2)$ and let $\mathcal{H} = (H_\alpha)_{\alpha \in I}$. We assert that \mathcal{H} is a family of pairwise disjoint open sets such that $F_\alpha \subseteq H_\alpha$ for all $\alpha \in I$. Clearly H_α is open and $F_\alpha \subseteq H_\alpha$ for $\alpha \in I$. If $H_\alpha \cap H_\beta \neq \emptyset$ for $\alpha, \beta \in I$ then there exists $\mathcal{W}_2(b)$ and $\mathcal{W}_2(c)$ in \mathcal{W}_2 such that $\mathcal{W}_2(b) \cap F_\alpha \neq \emptyset$, $\mathcal{W}_2(c) \cap F_\beta \neq \emptyset$ and $\alpha \in \mathcal{W}_2(b)$ $\cap \mathcal{W}_2(c)$ for some $a \in X$. Hence there exists $x \in \mathcal{W}_2(b) \cap F_\alpha$ and $y \in \mathcal{W}_2(c) \cap F_\beta$. But then $x \in \mathcal{W}_2(b) = st(a, \mathcal{W}_2) \subseteq \mathcal{W}_1(a)$. Since $(\mathcal{W}_1(x))_{x \in X}$ refines \mathcal{G} there exists $\delta \in I$ such that $\mathcal{W}_1(a) \subseteq G_\delta$. It follows that $x \in G_\delta$ and therefore $x \notin F_\zeta$ if $\zeta \neq \delta$, whence $\delta = \alpha$. A similar argument shows that $\delta = \beta$. Thus if $H_\alpha \cap H_\beta \neq \emptyset$ then $\alpha = \beta$.

We will now show that in the finite case the situation
is quite special. Specifically in 4.18 we will show the equivalence of U^2-paracompact, U^2-collectionwise normal, U^T-paracompact, and U^T-collectionwise normal. We will do this in two steps. First we have the following result.

4.16 Theorem. If (X, U) is a uniform space then the following statements are equivalent:

1. The space (X, U) is U^2-paracompact.
2. The space (X, U) is U^2-collectionwise normal.

Proof. (1) implies (2). Suppose that $J = (F_1, F_2)$ is a family of two discrete closed subsets of X. For $i = 1, 2$ let $G_i = X - F_i$ and let $\mathcal{G} = (G_1, G_2)$. Then \mathcal{G} is a binary open cover of the U^2-paracompact space X hence there exists a $U \in U$ such that $(U(x))_{X \in X}$ refines \mathcal{G}. Furthermore U is a uniformity so there exists a symmetric $V \in U$ such that $V^2 \subseteq U$. We need only show $V(F_1) \cap V(F_2) = \emptyset$. If $y \in V(F_1) \cap V(F_2)$ then there exists an $a \in F_1$ and $b \in F_2$ such that $(a, y) \in V$ and $(b, y) \in V$, hence $(a, b) \in V^2 \subseteq U$. Since $(U(x))_{X \in X}$ refines \mathcal{G}, $U(b) \subseteq G_1$. But then $a \in U(b) \subseteq G_1 = X - F_1$, a contradiction.

(2) implies (1). Let $A = (A_1, A_2)$ be a binary open cover. Set $F_i = X - A_i$, $i = 1, 2$ and note that $F_1 \cap F_2 = \emptyset$. If $F_1 = \emptyset$ or $F_2 = \emptyset$ the statement clearly holds. So assume each is nonempty. By (2) there exists $U \in U$ such that $U(F_1) \cap U(F_2) = \emptyset$. Since U is a uniformity there exists an open symmetric V such that $V^2 \subseteq U$. We assert that $(V(x))_{X \in X}$ refines A. Suppose that there exists $x \in X$ such that $V(x) \not\subseteq A_1$ and $V(x) \not\subseteq A_2$. Then there exists $z_1 \in V(x)$ such that $z_1 \not\subseteq A_1$ and $z_2 \in V(x)$ such that $z_2 \not\subseteq A_2$. But then $(x, z_1) \in V$ and
(x, z_2) \in \mathcal{V} \text{ so } (z_1, z_2) \in \mathcal{V}^2 \subseteq U. \text{ Now } z_1 \notin A_1 \text{ so } z_1 \notin X - A_1 = F_1 \text{ and therefore } z_2 \notin U(z_1) \subseteq U(F_1). \text{ Also } z_2 \notin A_2 \text{ so } z_2 \notin X - A_2 = F_2 \text{ hence } z_2 \notin F_2 \subseteq U(F_2). \text{ It follows that } U(F_1) \cap U(F_2) \neq \emptyset, \text{ a contradiction.}

4.17 Corollary. If \((X, \mathcal{U}) \) is \(\mathcal{U}^2 \)-paracompact then \(X \) is normal.

We can now show that in the finite case \(\mathcal{U}^T \)-paracompact and \(\mathcal{U}^T \)-collectionwise normal are equivalent to each other and to \(\mathcal{U}^2 \)-paracompact and \(\mathcal{U}^2 \)-collectionwise normal.

4.18 Theorem. If \((X, \mathcal{U}) \) is a uniform space then the following statements are equivalent:

1. The uniform space \((X, \mathcal{U}) \) is \(\mathcal{U}^2 \)-paracompact.
2. The uniform space \((X, \mathcal{U}) \) is \(\mathcal{U}^T \)-paracompact.
3. The uniform space \((X, \mathcal{U}) \) is \(\mathcal{U}^2 \)-collectionwise normal.
4. The uniform space \((X, \mathcal{U}) \) is \(\mathcal{U}^T \)-collectionwise normal.

Proof. (1) implies (2). Let \(\mathcal{A} = (A_1, \ldots, A_n) \) be a finite open cover of \(X \). By 4.17, \(X \) is normal, hence by [1, 11.7], there exists an open cover \(\mathcal{B} = (B_1, \ldots, B_n) \) such that \(\text{cl } B_i \subseteq A_i \) for \(i = 1, \ldots, n \). For each \(i \), let \(F_i = X - \text{cl } B_i \). Then \(J_i = (A_i, F_i) \) is a binary open cover of \(X \) and hence by (1) there exists \(U_i \in \mathcal{U} \) such that \((U_i(x))_{x \in X} \) refines \(J_i \). Let \(U = \cap_{i=1}^n U_i \) and note that \(U \in \mathcal{U} \). We assert that \((U(x))_{x \in X} \) refines \(\mathcal{A} \). For, if \(x \) is an element of \(X \) and if \(U(x) \) is not contained in \(A_i \) for all \(i = 1, \ldots, n \) then, since \((U_i(x))_{x \in X} \) refines \(J_i \), \(U(x) \subseteq U_i(x) \subseteq F_i \) for all \(i = 1, \ldots, n \). Therefore, \(U(x) \subseteq \cap_{i=1}^n F_i = \cap_{i=1}^n (X - \text{cl } B_i) = X - \cup_{i=1}^n \text{cl } B_i = \emptyset, \) a contradiction.
The implication (2) *implies* (3) follows from 4.15. Clearly (3) *implies* (4). Finally, (4) *implies* (1) follows from 4.16. The proof is now complete.

Finally, we give an example of a uniform space that is \(\mathcal{U} \)-paracompact but not \(\mathcal{U} \)-paracompact.

4.19 *Example* of a uniform space \((X, \mathcal{U})\) that is \(\mathcal{U} \)-paracompact but not \(\mathcal{U} \)-paracompact.

Let \(X \) be the topological space of all ordinal numbers less than the first uncountable ordinal number \(\omega_1 \). One often writes this space as \(\text{W}(\omega_1) \). For a description of this space see [1] or [5]. In particular \(X \) is almost compact but not compact. Since \(X \) is almost compact it has a unique uniformity which we denote by \(\mathcal{U} \). By 4.13, \(X \) is not \(\mathcal{U} \)-paracompact.

To see that \(X \) is \(\mathcal{U} \)-paracompact we show that \(X \) is \(\mathcal{U}^2 \)-collectionwise normal. Suppose that \(F_1 \) and \(F_2 \) are two (discrete) closed subsets of \(X \). Since \(X \) is normal there exists a real valued continuous function \(f \) from \(X \) into the closed unit interval \([0,1]\) such that \(f(x) = 0 \) if \(x \) is in \(F_1 \) and \(f(x) = 1 \) if \(x \) is in \(F_2 \). Let \(d \) be the continuous pseudo-metric associated with \(f \) and let \(U = \{ (x,y) \in X \times X : d(x,y) < 1/2 \} \). Then \(U \) is an element of the universal uniformity which must be in \(\mathcal{U} \) and one easily shows that \(U(F_1) \cap U(F_2) = \emptyset \).

References

Northern Illinois University
De Kalb, Illinois

and

Kent State University
Kent, Ohio