ON THE CHARACTER OF
SUPERCOMPACT SPACES

by

Jan van Mill and Charles F. Mills
ON THE CHARACTER OF SUPERCOMPACT SPACES

Jan van Mill and Charles F. Mills

1. Introduction, Definitions and Conventions

A collection of subsets \(J \) of a space \(X \) is called a \(\pi \)-network for \(x \in X \) provided that every neighborhood of \(x \) contains a member from \(J \). The supertightness \(p(x,X) \) of \(x \) in \(X \) is defined to be the least cardinal \(\kappa \) for which every \(\pi \)-network \(J \) for \(x \) consisting of finite subsets of \(X \) contains a subfamily \(J' \subseteq J \) of cardinality \(\leq \kappa \) which is a \(\pi \)-network for \(x \). In addition, the supertightness \(p(X) \) of \(X \) is defined by

\[
p(X) = \omega \cdot \text{sup} \{ p(x,X) | x \in X \}.
\]

It is clear that \(t(X) \leq p(X) \) for every topological space \(X \) (for the definitions of cardinal functions such as \(t,w,d,c,\chi \) see Juhász [7]); in addition the reader can easily verify that \(p(X) = t(X,H_f(X)) \), where \(H_f(X) \) denotes the hyperspace of finite nonempty subsets of \(X \).

For every compact Hausdorff space \(X \) and \(k \in \omega \) we say that \(\text{cmpn}(X) \leq k \) provided that there is an open subbase \(U \) for \(X \) such that every covering of \(X \) by elements of \(U \) contains a subcovering consisting of at most \(k \) elements of \(U \). In addition, \(\text{cmpn}(X) = k \) if \(\text{cmpn}(X) \leq k \) and \(\text{cmpn}(X) \neq k \) and \(\text{cmpn}(X) = \infty \) in case \(\text{cmpn}(X) \neq k \) for all \(k \in \omega \). \(\text{cmpn}(X) \) is called the compactness number of \(X \) (cf. Bell \& van Mill [3]). It is known that for every \(k \in \omega \) there is a compact Hausdorff space \(X_k \) for which \(\text{cmpn}(X_k) = k \); also \(\text{cmpn}(\beta \omega) = \infty \) (cf. Bell

1 The first author is supported by the Netherlands Organization for the Advancement of Pure Research (Z.W.O.); Juliana van Stolberghaag 148, 's-Gravenhage, The Netherlands.
& van Mill [3]). Spaces with compactness number less than or
equal to 2 are just the supercompact spaces as defined by
de Groot in [6]. Many spaces are supercompact, for example
all compact metric spaces (cf. Strok & Szymański [14]; ele­
mentary proofs of this fact have recently been discovered by
van Douwen [4] and Mills [12]). The first examples of non­
supercompact compact Hausdorff spaces were found by Bell [1].

In section 2 of the present paper we will prove a theorem
from which the following statement is a corollary:

If X is supercompact then \(\chi(X) \leq d(X) \cdot p(X) \).

The supercompactness of X is essential; we will give an
example of a space X such that cmpn(X) = 3, d(X) = p(X) = \(\omega \)
and \(\chi(X) = 2^{\omega} \). In addition we show that the inequality can­
not be sharpened by considering \(t \) instead of \(p \). We construct
an example of a supercompact space X such that \(d(X) = t(X) = \omega \)
while \(\chi(X) = p(X) = 2^{\omega} \).

We are indebted to Eric van Douwen for some helpful com­
ments.

2. On the Character of Supercompact Hausdorff Spaces

All topological spaces under discussion are assumed to
be Tychonoff.

Let X be a set and let \(\kappa \) be a cardinal. We define (as
usual)

\[
[X]^{\kappa} = \{ A \subseteq X \mid |A| = \kappa \}
\]

\[
[X]^{<\kappa} = \{ A \subseteq X \mid |A| < \kappa \}
\]

\[
[X]^{\leq\kappa} = \{ A \subseteq X \mid |A| \leq \kappa \}.
\]

Let X be a space, B be a closed subset of X, and Y be
the space obtained from X by identifying B to one point. Let
f: X → Y be the identification. For φ ∈ {t, p, χ} let

φ(B, X): = φ(f[B], Y).

In case X is supercompact, the supercompactness of X
can also be described in terms of a closed subbase: a space
is supercompact iff it has a closed subbase with the property
that any of its linked (= every two of its members meet) sub­
collections has nonvoid intersection. Such a subbase is
called binary. Without loss of generality we may assume that
a binary subbase is closed under arbitrary intersections.
Let S be a binary subbase for X. For A ⊆ X define I(A) ⊆ X
by

I(A): = ∩{S ∈ S|A ⊆ S}.

Notice that cl_X(A) ⊆ I(A), since each element of S is closed,
that I(I(A)) = I(A) and that I(A) ⊆ I(B) if A ⊆ B ⊆ X. The
following lemma was proved in van Douwen & van Mill [5].
For the sake of completeness we will give its proof also here.

2.1. Lemma (van Douwen & van Mill [5]). Let S be a
binary subbase for X and let p ∈ X. If U is a neighborhood
of p and if A is a subset of X with p ∈ cl_X(A), then there is
a subset B of A with p ∈ cl_X(B) and I(B) ⊆ U.

Proof. Since X is regular, p has a neighborhood V such
that p ∈ cl_X(V) ⊆ U. Let J be the collection of all finite
intersections of elements of S. Choose a finite J ⊆ J such
that cl_X(V) ⊆ ∪J ⊆ U. Now J is finite, and A ∩ V ⊆ ∪J, and
p ∈ cl_X(A ∩ V); hence there is an S ∈ J with p ∈ cl_X(A ∩ V
∩ S). Let B: = A ∩ V ∩ S. Then p ∈ cl_X(B), and B ⊆ A, and
I(B) ⊆ S ⊆ ∪J ⊆ U.

We now can prove the main result of this section.
2.2. Theorem. Let Y be a continuous image of a super-compact space. Then $\chi(Y) \leq d(Y) \cdot p(Y)$.

Proof. Let S be a binary subbase for X which is closed under arbitrary intersections and let $f: X \to Y$ be a continuous surjection. Let $\kappa = d(Y) \cdot p(Y)$ and fix a dense subset $D = \{d_\alpha | \alpha < \kappa\}$ of Y. Choose $y \in Y$ and define

$$J : = \{ \bigcup_{g | g \in [S]^{< \omega}} \text{ and } \exists \text{ neighborhood } U \text{ of } y \text{ such that } f^{-1}(U) \subset \bigcup_{g} \}.$$

Notice that for every neighborhood U of y there is an $F \in J$ such that $f^{-1}(y) \subset F \subset f^{-1}(U)$ since S is a subbase. For each $F \in J$ let $L = \bigcup_{i \leq n(F)} S^F_i$, where $S^F_i \in S$ for all $i \leq n(F)$. For each $\alpha < \kappa$ take $d'_\alpha \in X$ such that $f(d'_\alpha) = d_\alpha$.

Fix $\alpha < \kappa$ and $F = \bigcup_{i \leq n(F)} S^F_i \in J$. For each $i \leq n(F)$ pick a point $e_\alpha^i \in \bigcap_{S \in S^F_i} \bigcap \{d'_\alpha, s\} \cap S^F_i$. Notice that, since S is binary, it is possible to take such a point. Let $E^\alpha(F) = \{e_0^\alpha, \ldots, e_n^\alpha(F)\}$. Then $\{f(E^\alpha(F)) | F \in J\}$ is a collection of finite subsets of Y such that each neighborhood of y contains a member of it. Since $p(y,Y) \leq \kappa$ we can find a subfamily $J_\alpha \subset J$ of cardinality at most κ such that each neighborhood of y contains a member of $\{f(E^\alpha(F)) | F \in J_\alpha\}$.

We claim that

$$\bigcap_{\alpha \leq \kappa} J_\alpha \cap \overline{\text{cl}_X \{d'_\alpha | \alpha < \kappa\}} = f^{-1}(y) \cap \overline{\text{cl}_X \{d'_\alpha | \alpha < \kappa\}}$$

which proves that $\chi(y,Y) \leq \kappa$ since $|\bigcap_{\alpha \leq \kappa} J_\alpha| \leq \kappa \cdot \kappa = \kappa$. To this end, first observe that $f^{-1}(y) \subset \bigcap_{\alpha \leq \kappa} J_\alpha$. Assume that $(*)$ is not true; then there is an $x \in (\bigcap_{\alpha \leq \kappa} J_\alpha) \cap \overline{\text{cl}_X \{d'_\alpha | \alpha < \kappa\}} - (f^{-1}(y) \cap \overline{\text{cl}_X \{d'_\alpha | \alpha < \kappa\}})$. Then clearly $f(x) \neq y$.
and consequently we may take disjoint neighborhoods \(U \) and \(V \) of, respectively, \(y \) and \(f(x) \). By lemma 2.1 we can find a subset \(D'_0 = \{d'_a | a < \kappa\} \) such that \(x \in I(D'_0) \subset f^{-1}(V) \). Pick \(d'_{a_0} \in D'_0 \) arbitrarily. In addition, take \(F \in J_{a_0} \) such that
\[
E_{a_0}(F) \subset f^{-1}(U).
\]
Since \(x \in \cap_{a < \kappa} J_a \) we have that \(x \in F = \bigcup_{i \in \mathbb{N}(F)} S_i^F \); hence there is an \(i_0 \leq \mathbb{N}(F) \) such that \(x \in S_{i_0}^F \).

Then \(e_{i_0}^{a_0} \in \cap_{s \in S_{i_0}} I(\{d'_{a_0}, s\}) \cap S_{i_0}^F \subset I(\{d'_{a_0}, x\}) \cap S_{i_0}^F \subset I(D'_0) \cap S_{i_0}^F \subset f^{-1}(V) \). This is a contradiction, however, since
\[
e_{i_0}^{a_0} \in f^{-1}(U) \text{ and } f^{-1}(U) \cap f^{-1}(V) = \emptyset.
\]

2.3. Corollary. Let \(X \) be a supercompact space and let \(B \) be a closed subset of \(X \). Then \(\chi(B) \leq d(X) \cdot p(B, X) \).

We will now describe the examples announced in the introduction. We start with a useful result, the proof of which was suggested to us by Eric van Douwen. Our original proof was much more complicated.

2.4. Theorem. Let \(\gamma X \) be a compactification of a separable metric space \(X \) such that \(\gamma X - X \) is homeomorphic to the one point compactification of a discrete space. Then \(p(\gamma X) = \omega \).

Proof. Write \(\gamma X - X \) as \(D \cup \{\infty\} \), where \(\infty \) is the non-isolated point. Evidently \(p(x, \gamma X) = \omega \) for all \(x \neq \infty \). It remains to show that \(p(x, \gamma X) = \omega \). Let \(B \) be a countable base for \(X \) closed under finite union.

For \(A, C \subseteq \mathcal{P}(\gamma X) \) and \(S \subseteq \gamma X \) we say that \(C \) covers \(A(\text{rel } S) \) if for every neighborhood \(U \) of \(\infty \) with \(U \supseteq S \) the following holds: if there is there is \(A \in A \) with \(A \subseteq U \) then there is
C ∈ C with C ⊆ U. We say that C covers A if C covers A(\text{rel } \emptyset).

We prove that \(p(\omega, \gamma X) = \omega \) by proving something formally stronger:

(1) for all \(J \subseteq [\gamma X]^{<\omega} \) there is \(J' \in [J]^{<\omega} \) which covers \(J \).

So let \(J \subseteq [\gamma X]^{<\omega} \). For \(B \in \beta \) and \(n \in \omega \) define

\[
J_{B,n} = \{ F \in J : F \cap X \subseteq B, |F \cap D| = n \}.
\]

[We do not care if \(\omega \in F \) or not.] Using the fact that \(\beta \) is closed under finite unions, one can easily prove that (1) follows from

(2) for all \(B \in \beta \) and \(n \in \omega \) there is \(J'_{B,n} \in [J_{B,n}]^{<\omega} \) which covers \(J_{B,n} \) (\text{rel } B).

But evidently (2) follows from

(3) for all \(n \in \omega \), if \(A \subseteq [D]^n \) then there is \(A' \in [A]^{<\omega} \) which covers \(A \).

We prove (3) with induction on \(n \). For \(n = 0 \) there is nothing to prove. Suppose (3) holds for a certain \(n \in \omega \), and let \(A \subseteq [D]^{n+1} \). Let \(M \) be a maximal disjoint subfamily. If \(M \) is infinite let \(A' \) be any member of \([M]^{\omega} \). If \(M \) is finite

\[
A_x = \{ A \in A : x \in A \} \quad (x \in \cup M)
\]

For each \(x \in \cup M \) there is \(A'_x \in [A_x]^{<\omega} \) which covers \(A_x \). Now let \(A' = \cup_{x \in \cup M} A' \).

This theorem gives us our first example.

2.5. Example. A compact space \(X \) such that \(\text{cmpn}(X) = 3 \), \(d(X) = p(X) = \omega \) while \(\chi(X) = 2^{\omega} \).

Indeed, let \(X \) be the one point compactification of the Cantor tree \({}^\omega 2 \cup {}^\omega 2 \) (cf. Rudin [13]). In van Douwen &
van Mill [5] it was shown that this space has compactness number 3 (this was also shown independently by M. G. Bell). Theorem 2.5 gives us \(p(X) = \omega \) while clearly \(d(X) = \omega \) and \(\chi(X) = 2^\omega \).

We will now describe our second example.

2.6. Example. A supercompact space \(Z \) for which \(d(Z) = t(Z) = \omega \) and \(\chi(Z) = 2^\omega \).

Indeed, let \(L \) be the "double arrow line," i.e. the space \([0,1] \times 2\) lexicographically ordered. Let \(A \subset L^2 \) be the set \(\{(x,y) | y \geq x \} \). Then set \(Z = L^2 / A \), and let \(\pi : L^2 \rightarrow X \) be the projection. Since \(L \) is first countable, so is \(L^2 \); we conclude that \(t(L^2) = \omega \). This implies that \(t(Z) = \omega \) since \(\pi \) is closed. Clearly \(d(Z) = \omega \). Since \(L^2 - A \) contains \(\{(a,1),(a,0)\} | a \in [0,1] \} \) as a closed discrete subset of cardinality \(2^\omega \), \(A \) is not a \(G_\delta \) in \(L^2 \) so that \(\chi(Z) > \omega \). In fact, it is easily seen that \(\chi(Z) = 2^\omega \). It remains only to show that \(X \) is supercompact.

To this end, let \(A_0 \) be the set of all clopen rectangles in \(L^2 \) which do not meet \(A \) (a rectangle is the product of two intervals). In addition, let \(A_1 : = \{[a,b]^2 | [a,b] \text{ is clopen in } L \} \). It is easily verified that \(\{\pi[B] | B \in A_0 \cup A_1 \} \) is a binary closed subbase for \(Z \).

The above space \(Z \) of example 2.7 has another surprising property; it is the continuous image of a normally supercompact space while \(\chi(Z) < d(Z) \cdot t(Z) \). Below we will prove that for every normally supercompact space \(X \) the inequality \(\chi(X) \leq d(X) \cdot t(X) \) holds. Hence, in contrast with Theorem 2.2,
this is not true for continuous images of normally super-
compact spaces.

Recall that a normally supercompact space is a space X
which possesses a binary subbase S which in addition is normal,
i.e. for all disjoint $S_0, S_1 \in S$ there are $T_0, T_1 \in S$ such that
$S_0 \subseteq T_0 - T_1, S_1 \subseteq T_1 - T_0$ and $T_0 \cup T_1 = X$. This is not such
a strange condition, since in van Mill & Schrijver [10] it
was shown that if S is a binary subbase for X then S is
weakly normal, i.e. for all disjoint $S_0, S_1 \in S$ there is a
finite covering \mathcal{M} of X by elements of S such that each ele-
ment of \mathcal{M} meets at most one of S_0 and S_1. However, the
normally supercompact spaces have much stronger properties
than the supercompact spaces, see van Mill [9]. We also
want to notice that there is a geometric characterization of
normally supercompact spaces, see van Mill & Wattel [11].

Since it is easily seen that each product of linearly
orderable compact spaces is normally supercompact we see that
the space Z of example 2.6 is the continuous image of a
normally supercompact space.

2.7. Lemma. Let S be a binary normal subbase for $X,$
let $x \in X$ and let U be a neighborhood of x. Then there is
a neighborhood V of x such that $x \in V \subseteq I(V) \subseteq U.$

Proof. Without loss of generality we may assume that
U is open. Let $J \in [S]^{<\omega}$ such that $x \notin \cup J = X - U$. For
each $F \in J$ choose $F' \in S$ such that $x \in \text{int}_X(F')$ and $F' \cap F = \emptyset$.
This is possible since S is normal and since $\{x\} = \cap \{s \in S | x \in S\}$ and since S is binary. Then $V = \cap _{F \in J} \text{int}_X(F')$ is
as required.
2.8. Theorem. Let X be a normally supercompact space. Then $\chi(X) \leq d(X) \cdot t(X)$.

Proof. Use Lemma 2.8 and the same technique as in Theorem 2.2.

References

University of Wisconsin
Madison, Wisconsin 53706