ON ULTRA POWERS OF BOOLEAN ALGEBRAS

by

ALAN DOW
ON ULTRA POWERS OF BOOLEAN ALGEBRAS

Alan Dow

0. Introduction

If \(A \) is an algebra with finitely many finitary operations and relations and if \(p \) is an ultrafilter on \(\omega \) then the reduced ultrapower \(A^\omega/p \) is also an algebra with the same operations. Keisler has shown that CH implies \(A^\omega/p \) is isomorphic to \(A^\omega/q \) for any free ultrafilters \(p, q \) on \(\omega \) when \(|A| \leq c \). In this note it is shown that if CH is false then there are two free ultrafilters \(p, q \) on \(\omega \) such that if \((A, <) \) has arbitrarily long finite chains then \(A^\omega/p \) is not isomorphic to \(A^\omega/q \). This answers a question in [ACCH] about real-closed \(\eta_1 \)-fields. Furthermore we show that, if \(A \) is an atomless boolean algebra of cardinality at most \(c \), then each ultrafilter of \(A^\omega/p \) has a disjoint refinement, partially answering a question in [BV]. We also show that if \(B \) is the countable free boolean algebra then it is consistent that there is an ultrafilter \(p \) on \(\omega \) so that \(P(\omega)/\text{fin} \) will embed into \(B^\omega/p \) but \(B^\omega/p \) will not embed into \(P(\omega)/\text{fin} \).

1. Preliminaries

In this section the notation we use is introduced and we review some facts about ultraproducts which we will require. Our standard reference is the Comfort and Negrepontis text [CN]. Small Greek letters will denote ordinals.

\(^1\)Research supported by the NSERC of Canada.
and a cardinal is an initial ordinal. If S is a set and α is an ordinal, then S^α is the set of functions from α to S, $|S|$ is the cardinality of S and $[S]^{<\alpha}$ is the set of subsets of S of cardinality less than α. We sometimes use 2^α to denote cardinal exponentiation and this shall be clear from the context. If an ultrafilter p on a cardinal α has the property that $|A| = \alpha$ for each $A \in p$ then p is called a uniform ultrafilter; $U(\alpha)$ is the set of all uniform ultrafilters on α, $\beta\alpha$ is the set of all ultrafilters on α and α^* is all free ultrafilters.

Let α be an infinite cardinal and let $p \in \alpha^*$, for a set S the ultrapower S^α/p is the set of equivalence classes on S^α where for $s, t \in S^\alpha$, $s =^p t$ if $\{a \in \alpha : s(a) = t(a)\} \in p$. We will usually assume that when we choose $s \in S^\alpha/p$ we have in fact chosen $s \in S^\alpha$. If $L(\ , \)$ is a binary relation on S then $L(p, \ ,)$ is a relation on S^α/p or S^α defined by $L(p,s,t)$ if $\{a \in \alpha : L(s(a),t(a))\} \in p$. More generally, if p is any filter on α, define $L(p,s,t)$ if $\{a \in \alpha : L(s(a),t(a))\} \in p$. If for $\gamma \in \alpha$, S_γ is a set then the ultraproduct $\prod_{\gamma < \alpha} S_\gamma/p$ is defined similarly, as are any relations and functions. Also let $L(p,s,t,v)$ abbreviate $L(p,s,t)$ and $L(p,t,v)$. Throughout this paper L will be an order (the usual order on an ordinal) and E will be equality.

A function V from $[\alpha]^{<\omega}$ to $P(\alpha)$ is called multiplicative if $V(H) = \{V(\{a\}) : a \in H\}$ for each $H \in [\alpha]^{<\omega}$. A filter p on α is called α^+-good if for each function W from $[\alpha]^{<\omega}$ to p there is a multiplicative function V from $[\alpha]^{<\omega}$ to p such that $V(H) \subseteq W(H)$ for each $H \in [\alpha]^{<\omega}$. A filter
is \(\omega \)-incomplete if it has countable many members whose intersection is empty.

A structure \((S, L)\) is \(\alpha \)-saturated if whenever fewer than \(\alpha \) sentences of the form \(\exists x \ L(s, x), \exists x \neg L(s, x), \exists x \ L(x, s) \) or \(\exists x \neg L(x, s) \) are given and any finitely many can be satisfied with a single \(x \in S \), then there is an \(x \in S \) which satisfies them all simultaneously. For example the set of rationals with the usual order is \(\omega \)-saturated but not \(\omega_1 \)-saturated. For subsets \(C, D \) of \(S \), let \(L(C, D) \) abbreviate that \(L(c, d) \) for each \(c \in C \) and \(d \in D \), in case of \(L(C, \{ d \}) \) or \(L(\{ c \}, D) \) we will omit the parentheses. For regular cardinals \(\kappa, \lambda \) we say that \((C, D)\) forms a \((\kappa, \lambda)\)-gap in \((S, L)\) if \(L(C, D) \), \(C \) is an increasing chain of order type \(\kappa \), \(D \) is a decreasing chain with order type \(\lambda \) under the reverse ordering and there is no \(x \in S \) with \(L(C, x, D) \).

Keisler introduced the notion of an \(\alpha^+ \)-good ultrafilter basically because of the following theorem. Keisler showed that assuming GCH there are \(\omega \)-incomplete \(\alpha^+ \)-good ultrafilters in \(U(\alpha) \) and Kunen later removed the GCH assumption (see [Ke], [K], [CN]).

1.1 Theorem (Keisler). \((S^\alpha/p, L(p))\) is \(\alpha^+ \)-saturated if \((S, L)\) is \(\omega \)-saturated and \(p \in U(\alpha) \) is \(\omega \)-incomplete and \(\alpha^+ \)-good.

Another result of Keisler's which we require is the following.
1.2 Theorem (Keisler). If $p \in \mathcal{U}(\alpha)$ is α^+-good and
{} $\{S_\gamma : \gamma < \alpha\}$ are all finite sets such that
{} $\{\gamma : |S_\gamma| > n\} : n \in \omega \subset p$ then $|\prod_{\gamma < \alpha} S_\gamma / p| = 2^\alpha$. (Note that p is
{} ω-incomplete.)

We include a proof of 1.2 because it is probably not as well known as 1.1 and to give the flavor of the use of good filters.

Proof. Let W be the map from $[\alpha]^{<\omega}$ to p defined by
{} $W(H) = \{\gamma : |S_\gamma| > k\}$ where $k = |H^H|$. Suppose that
{} $V : [\alpha]^{<\omega} \to p$ is a multiplicative function refining W. For
{} each $\gamma < \alpha$, let $H_\gamma = \{\delta \in \alpha : \gamma \in V(\delta)\}$. Now define
{} $n_\gamma = |H_\gamma|$ and note that we may assume that $S_\gamma \supset T_\gamma = n_\gamma H_\gamma$
{} since $V(H_\gamma) = \{V(\delta) : \delta \in H_\gamma\} \subset W(H_\gamma)$. Let $X = \prod_{\gamma < \alpha} n_\gamma / p$.
{} Define a function e from X^α to $\prod_{\gamma < \alpha} T_\gamma / p$ as follows: for
{} $y \in X^\alpha$ let $e(y) \in \prod_{\gamma < \alpha} T_\gamma / p$ where $e(y)(\gamma) \in T_\gamma$ and is such
{} that $e(y)(\gamma)(\delta) = y(\delta)(\gamma)$ for each $\delta \in H_\gamma$. Now if $y \neq z$
{} are both in X^α, then for some $\delta \in \alpha - E(p,y(\delta),z(\delta))$. It
{} follows that $\{\gamma \in \alpha : e(y)(\gamma) \neq e(z)(\gamma)\} \supset \{\gamma \in \alpha : \delta \in H_\gamma$
{} and $y(\delta) \neq z(\delta)\} = V(\{\delta\}) \cap \{\gamma : y(\delta)(\gamma) \neq z(\delta)(\gamma)\} \in p$ and
{} so $e(y) \neq e(z)$. Therefore $|\prod_{\gamma < \alpha} S_\gamma / p| \geq |\prod_{\gamma < \alpha} T_\gamma / p| \geq
{} |X^\alpha| = 2^\alpha$. The reverse inequality is trivial.

1.3 Definition. For a cardinal α, let $\gamma \in \alpha^\alpha$ where
{} $\gamma(\delta) = \gamma$ for $\delta \in \alpha$. For $p \in \mathcal{U}(\alpha)$, define $\kappa(i,p) = \min(\kappa :
{} (\alpha^\alpha,L(p))$ has an (ω_1,κ)-gap of the form $\{(\gamma : \gamma < \omega_1$
{} $, \{f_\delta : \delta < \kappa\}\}$ for each regular $\omega_1 \leq \alpha$. Similarly, let
{} $b(p) = \min(\kappa : (\alpha^\alpha,L(p))$ has (κ,\emptyset)-gap). If $\alpha = \omega$, let
{} $\kappa(\emptyset,p) = \kappa(p)$.

1.4 Proposition. Let $p \in U(\alpha)$ be ω-incomplete α^+-good. If (S,L) has increasing chains of any finite length then, for each regular $\omega_i \leq \alpha$, $\kappa(i,p)$ is the unique regular cardinal such that $(S^\alpha,L(p))$ has an (ω_i,κ)-gap. Hence $\kappa(i,p) > \alpha$.

Proof. Let us first show that $(S^\alpha,L(p))$ has an increasing chain of order type α. Fix $\{A_n : n \in \omega\} \subseteq p$ so that $\cap A_n = \emptyset$ and let V be a multiplicative map of $[\alpha]^{<\omega}$ into p with $V(H) \subseteq A_{|H|}$ for $H \in [\alpha]^{<\omega}$. For each $\delta \in \alpha$, let $H_\delta = \{\gamma \in \alpha : \delta \in V(\{\gamma\})\}$ and let $C_\delta = \{c(\delta,\gamma) : \gamma \in H_\delta\} \subseteq S$ be a chain. Define, for $\gamma \in \alpha$, $g_\gamma \in S^\alpha$ so that if $\gamma \in H_\delta$ then $g_\gamma(\delta) = c(\delta,\gamma)$. Now if $\beta < \gamma < \alpha$, then $\delta \in \alpha : L(g_\delta(\delta), g_\gamma(\delta)) \supseteq V(\{\beta,\gamma\}) \in p$. It is now clear that if $\omega_i \leq \alpha$ is regular and $\{g_\gamma : \gamma < \omega_i\} \subseteq S^\alpha$ is a chain then we may assume that V, $\{g_\gamma : \gamma < \omega_i\}$, $\{H_\delta : \delta \in \alpha\}$ and $\{C_\delta : \delta \in \alpha\}$ are as above. Furthermore if $h \in S^\alpha$ is such that $L(p,g_\gamma,h)$ for $\gamma < \omega_i$ then there is an $h' \in \Pi_{\delta < \alpha} C_\delta$ so that $L(p,g,h',h)$ for $\gamma < \omega_i$. Indeed, define $h'(\delta) = \max\{g_\gamma(\delta) : \gamma \in H_\delta \text{ and } L(p,g,h(\delta))\}$. Therefore, for any regular cardinal κ, if $\{h_\gamma : \gamma < \kappa\} \subseteq S^\alpha$ is such that $\{g_\gamma : \gamma < \omega_i\}$, $\{h_\gamma : \gamma < \kappa\}$ is a gap, then we may assume $\{h_\gamma : \gamma < \kappa\} \subseteq \Pi_{\delta < \alpha} C_\delta$.

Similarly in the structure $(\alpha^\alpha,L(p))$, if $\{f_\gamma : \gamma < \kappa\} \subseteq \alpha^\alpha$ is such that $\{f_\gamma : \gamma < \omega_i\}$, $\{f_\gamma : \gamma < \kappa\}$ form a gap, we may assume $f_\gamma \in \Pi_{\delta < \alpha} H_\delta$. The result now follows from the fact that $(\Pi_{\delta < \alpha} C_\delta/p,L(p))$ is isomorphic to $(\Pi_{\delta < \alpha} H_\delta/p,L(p))$.

If B is a boolean algebra, then the Stone space of B, $S(B)$, is the space of ultrafilters of B in which a set is closed and open (=clopen) precisely when it is of the form
$b^* = \{ p \in S(B) : b \in p \}$. Conversely if X is a compact space with a base for the topology consisting of clopen sets (= 0-dimensional) then $CO(X)$ is the boolean algebra of clopen subsets of X. It is clear that B is isomorphic to $CO(S(B))$ and that X is homeomorphic to $S(CO(X))$. Also B embeds into $CO(X)$ if and only if X maps continuously onto $S(B)$. The set β_α is topologized as $S(P(\alpha))$ and both $U(\alpha)$ and α^* have the subspace topology. Recall that the unique countable atomless boolean algebra is equal to $CO(2^\omega)$ where 2^ω is the Cantor set (i.e. 2^ω has the product topology).

There is an alternate construction of an ultrapower of a boolean algebra B. The topological space $\alpha \times S(B)$ (where α has the discrete topology) has a Stone-Cech compactification $\beta(\alpha \times S(B))$. In fact, $\beta(\alpha \times S(B))$ is just the Stone space of B^α. The map $f: \alpha \times S(B) \to \alpha$ defined by $f([\gamma] \times S(B)) = \gamma$ extends to an open map f from $\beta(\alpha \times S(B))$ to β_α. If we let $K^P = f^+(p)$ for $p \in U(\alpha)$ then $CO(K^P) \cong B^\alpha/p$. If p is ω-incomplete α^+-good then K^P is an F_{α^+}-space in which any non-empty intersection of at most α many clopen sets has infinite interior (see [CN]). This is clearly not a useful way of constructing the ultrapower but the space K^P is an interesting topological space and an analogous construction can be made from spaces of the form $\alpha \times Y$ where Y is, for example, connected.

2. The Main Constructions

Let (S,L) be an ω-saturated structure with $|S| = \alpha$ and let $p,q \in U(\alpha)$ be ω-incomplete α^+-good. If $2^\alpha = \alpha^+$ then it is easily seen by 1.1 that $S^\alpha/p \cong S^\alpha/q$ because they each
have cardinality 2^α. However if $2^\alpha > \alpha^+$ it may not be the case that these ultrapowers are isomorphic. The easiest way to distinguish them would be if $\kappa(i,p) \neq \kappa(i,q)$ for some $\omega_i < \alpha$. In this section we show that there is always $p \in U(\alpha)$ so that $\kappa(i,p) = \text{cf}(2^\alpha)$ (the cofinality of 2^α) for each $\omega_i < \alpha$. Furthermore in the case of $\alpha = \omega$ we show that $\kappa(p)$ can be anything reasonable. In fact we prove the following two theorems.

2.1 Theorem. There is an ω-incomplete α^+-good ultrafilter p on ω so that $\kappa(i,p) = \text{cf}(2^\alpha)$ for each regular $\omega_i < \alpha$.

2.2 Theorem. For each regular κ with $\omega_1 < \kappa < 2^\omega$ there is a $p \in U(\omega)$ so that $\kappa(p) = \kappa$.

The reason that we are able to prove more for $\alpha = \omega$ is that every free ultrafilter on ω is ω^+-good which is not the case for $\alpha > \omega$. If $(R,<,+,x)$ is the field of real numbers then $(R^\omega/p,L(p),+(p),x(p))$ with the obvious meanings is an example of a real-closed η_1-field or an H-field (see [ACCH]), for each p in $U(\omega)$. From 2.2, we obtain the following answer to a question in [ACCH].

2.3 Corollary. If $2^\omega > \omega_1$ then there are non-isomorphic H-fields of cardinality 2^ω. These fields may all have the form R^ω/p for $p \in U(\omega)$.

This was shown to be consistent by Roitman [R] and the first sentence was shown to be consistent in [ACCH].
Recall that if p is a filter on ω, not necessarily maximal, and $f, g \in S^\omega$ then $L(p, f, g)$ denotes the condition \{for each $n \in \omega$, $f(n) < g(n)$\} $\in p$. If p is the cofinite filter on ω then we use $f <^* g$ rather than $L(p, f, g)$. Recall that $b = \min\{|F| : F \subset \omega^\omega$ and there is no $g \in \omega^\omega$ such that $f <^* g$ for all $f \in F\}$ and $d = \min\{|F| : F \subset \omega^\omega$ and for each $g \in \omega^\omega$ there is an $f \in F$ with $g <^* f\}$. It is easily seen that, for any $p \in U(\omega)$, $b \leq b(p) \leq d$ and since it is consistent that $b = d = \kappa$ for any regular κ with $\omega_1 \leq \kappa < 2^\omega$, $b(p)$ cannot take the place of $\kappa(p)$ in 2.2. On the other hand it is a result of Rothberger that $\min\{\kappa : P(\omega)/\text{fin}$ has an (ω, κ)-gap\} and it is easily shown that $b = \min\{\kappa : (\omega^\omega, <^*)$ has an (ω, κ)-gap\} hence it is somewhat surprising that $\kappa(p)$ need not equal b or $b(p)$. However for P-points in $U(\omega)$ $\kappa(p) \geq b$ (I do not know if $\kappa(p) = b(p)$). A point $p \in S(B)$, for a boolean algebra B, is a P_α-point if p is an α-complete filter, a P-point is a P_{ω_1}-point (i.e. if $A \in [p]^\omega$ then there is a $b \in p$ with $b < a$ for each $a \in A$).

2.4 Proposition. If $p \in U(\omega)$ is a P-point then $b \leq \kappa(p) \leq d$.

Proof. If $g \in \omega^\omega$ and $L(p, n, g)$ for each $n \in \omega$, then there is an $f \in \omega^\omega$ such that $E(p, g, f)$ while $f^+(n)$ is finite for each $n \in \omega$. Now let \{\{q_\alpha : \alpha < \kappa(p)\} \subset \omega^\omega$ be chosen so that $|q^+(\alpha)(n)| < \omega$ for each $n \in \omega$ and \{\{n : n \in \omega\}, \{q_\alpha : \alpha < \kappa(p)\}\} forms a gap in $(\omega^\omega, L(p))$. For each $\alpha < \kappa(p)$ and $n \in \omega$ define $f^\alpha(n) = \min\{k : q^\alpha(j) > n$ for $j > k\}$. We show that \{\{f^\alpha : \alpha < \kappa(p)\}$ is unbounded in $(\omega^\omega, <^*)$. Indeed suppose that $f \in \omega^\omega$ is strictly increasing and $f^\alpha <^* f$ for
\(a < \kappa(p)\). Define \(g(k) = \max(n: f(n) \leq k)\) for \(k \in \omega\). Let \(a < \kappa(p)\) and choose \(m \in \omega\) so that \(f(n) > f_a(n)\) for \(n > m\).

Now let \(j > f(m)\) and let \(g(j) = n\), hence \(f_a(n) < f(n) < j\) which means that \(g_a(j) > n\). Therefore \(g < * g_a\) for all \(a < \kappa(p)\), which is a contradiction; and so \(\kappa(p) > b\). Now let \(H \subset \omega^\omega\) be increasing functions with \(|H| = d\) so that for each \(f \in \omega^\omega\) there is an \(h \in H\) with \(f < * h\). For each \(f \in H\), \(|\{a < \kappa(p): f_a < * f\}| < \kappa(p)\) since otherwise we could define \(g\) as above and have \(g < * g_a\) for \(a < \kappa(p)\). Therefore, since, for each \(a < \kappa(p)\), there is an \(h \in H\) with \(f_a < * h\), \(\kappa(p) \leq |H|\).

Before we can give the proofs of 2.1 and 2.2 we need some preliminary results.

2.5 Definition. Let \(F \subset \alpha^\alpha\) and let \(p\) be a filter on \(\alpha\). \(F\) is of large oscillation mod \(p\) if for any \(n < \omega\), \(\{f_1, \ldots, f_n\} \subset F\), \((\gamma_1, \ldots, \gamma_n) \in \alpha^n\) and \(A \in p\) the set \(A \cap \bigcap \{f_i^+(\gamma_n): 1 \leq i \leq n\}\) is not empty.

The above definition and the following result are in [EK].

2.6 Theorem. There is a set \(F \subset \alpha^\alpha\) of cardinality \(2^\alpha\) such that \(F\) is of large oscillation mod \(p\) where \(p = \{A \subset \alpha: |\alpha \setminus A| < \alpha\}\).

Kunen constructed \(\alpha^+\)-good ultrafilters on \(\alpha\) using the following idea.

2.7 Lemma. Suppose that \(p\) is a filter on \(\alpha\), \(F \subset \alpha^\alpha\) is of large oscillation mod \(p\), \(W\) is a function from \([\alpha]^{<\omega}\) into
p and A is a subset of \(\alpha \). There is a filter \(p' \supseteq p \) and \(F' \subseteq F \) and a multiplicative function \(V \) from \([\alpha]^{<\omega} \) into \(p' \) so that \(V \) refines \(W \), \(|F \setminus F'| < \omega \), either \(A \) or \(\alpha \setminus A \) is in \(p' \) and \(F' \) is of large oscillation mod \(p' \).

Proof. We first find \(V \). Let \(\{ H : \gamma < \alpha \} \) be a listing of \([\alpha]^{<\omega} \) and let \(f_0 \in F \) be arbitrary. For each \(H \in [\alpha]^{<\omega} \), let \(W'(H) = \cap W(J) : J \subseteq H \}, \) and define \(V(H) = \cup \{ f_0^+(\gamma) \cap W'(H) : H \subseteq H_\gamma \}. \) For each \(\delta \in H \) and \(\gamma \) with \(H \subseteq H_\gamma \), \(V(\{ \delta \}) \cap f_0^+(\gamma) = W'(H_\gamma) \) and for \(\gamma \) with \(H_\gamma \neq \emptyset \) there is a \(\delta \in H \) with \(V(\{ \delta \}) \cap f_0^+(\gamma) = \emptyset \). It follows that \(V \) is multiplicative. Let \(p_0 \) be the filter generated by \(p \cup \{ V(\{ \delta \}) : \delta < \alpha \} \); \(p_0 \) is a filter since for \(D \in p, \gamma < \alpha \ D \cap V(H_\gamma) \supseteq D \cap W'(H_\gamma) \cap f_0^+(\gamma) \neq \emptyset \). It is routine to check that \(F \setminus \{ f_0 \} \) is of large oscillation mod \(p_0 \). If \(F \setminus \{ f_0 \} \) is of large oscillation mod the filter generated by \(p_0 \cup \{ A \} \) then let these be \(F' \) and \(p' \) respectively. Otherwise there are \(f_1, \ldots, f_n \in F \setminus \{ f_0 \}, (\gamma_1, \ldots, \gamma_n) \in \alpha^n \) and \(D \in p_0 \) with \(D \cap A \cap \cap f_i^+(\gamma_i) : i = 1, \ldots, n) = \emptyset \). In this case we let \(F' = F \setminus \{ f_0, f_1, \ldots, f_n \} \) and let \(p' \) be the filter generated by \(p_0 \cup \{ f_i^+(\gamma_i) : i = 1, \ldots, n \} \).

The construction of an \(\omega \)-incomplete \(\alpha^+ \)-good ultrafilter is then just an induction of length \(2^\alpha \) using 2.7 and being sure to introduce enough multiplicative functions and to make sure it is maximal. In order to prove 2.1 we simply add a few steps to the induction according to 2.8.

2.8 Lemma. If \(p \) and \(F \) are as in 2.7, \(\omega_i \leq \alpha \) and
\(H = \{ h \in \alpha^\alpha : L(p, \gamma, h) \) for all \(\gamma < \omega_i \} \) then there is a
filter p' and a function $f \in F$ so that $L(p, \gamma, f, h)$ for
$\gamma < \omega_1$, $h \in H$ and $F \setminus \{f\}$ is of large oscillation mod p'.

Proof. Let $f \in F$ be arbitrary and let p' be the
filter generated by $p \cup \{u(f^+(\delta) \cap h^+((\delta, \omega_1)) : \gamma < \delta < \omega_1) : \gamma < \omega_1$ and $h \in H\}$. We show that $F \setminus \{f\}$ is of large oscillation mod p'. Indeed suppose that $f_1, \ldots, f_n \in F \setminus \{f\},$
$(\gamma_1, \ldots, \gamma_n) \in \alpha^n$, $A \in p$, $\gamma < \omega_1$ and $h \in H$ (note that H is
closed under finite meets). Let $\gamma < \delta < \omega_1$, then
$A \cap h^+((\delta, \omega_1)) = A' \in p$ since $L(p, \gamma, h)$. Therefore
$A' \cap f^+(\delta) \cap \{f_j^+(\gamma_j) : j = 1, \ldots, n\} \neq \emptyset$. It is clear that,
for $\gamma < \omega_1$, $L(p, \gamma, f)$ and, for $h \in H$,
$\{j < a : f(j) < h(j)\} \supset
\{f^+(\delta) \cap h^+((\delta, \omega_1)) : \delta < \omega_1\} \in p'$.

Proof of Theorem 2.1. Starting with a family F given
in 2.6 perform an induction of length 2^α to construct a
chain of filters $\{p_\delta : \delta < 2^\alpha\}$ using, for instance, 2.8 when
$\text{cf}(\delta) = \omega_1$ and 2.7 otherwise. To see that, for $\omega_1 \leq \alpha$ with
ω_1 regular, $\kappa(i, p) \geq \text{cf}(2^\alpha)$ observe that if $H \subseteq \alpha^\alpha$,
$|H| < \text{cf}(2^\alpha)$ and $L(p, \gamma, f)$ for $\gamma < \omega_1$ and $h \in H$ then there
is some $\delta < 2^\alpha$ with $\text{cf}(\delta) = \omega_1$ such that $L(p_\delta, \gamma, h)$ for
$\gamma < \omega_1$ and $h \in H$. Therefore by 2.8, there is an $f \in \alpha^\alpha$ with
$L(p_{\delta+1}, \gamma, f, h)$ for $\gamma < \omega_1$, $h \in H$. Also, if $D \subseteq 2^\alpha$ is cofinal
with $\text{cf}(\delta) = \omega_1$ for $\delta \in D$, then there are f_δ, $\delta \in D$, so
that if $L(p, \gamma, h)$ then $L(p_\delta, \gamma, h)$ for some $\delta \in D$ and so
$L(p, \gamma, f_\delta, h)$.

Proof of Theorem 2.2. In this case $\alpha = \omega$ and so we do
not have to worry about making the filter α^+-good. Let κ
be any regular cardinal with $\omega_1 < \kappa \leq 2^\omega$ and let $F \subseteq \omega^\omega$ be
of large oscillation mod the cofinite filter with $|F| = \kappa$.

For each $f \in F$, let g_f be the map from $U(\omega)$ onto the ordinal space $\omega + 1$ defined by $g_f^+(n) = [f^+(n)]^*$ and $g_f^-(\omega) = U(\omega) \setminus \bigcup \{g_f^+(n) : n \in \omega\}$. Now let G be the map from $U(\omega)$ onto $(\omega + 1)^F$ which is just the product of the g_f's, $f \in F$.

Finally, using a Zorn's Lemma argument, we find a closed set $K \subset U(\omega)$ so that G maps K onto $(\omega + 1)^F$ but no proper closed subset of K maps onto $(\omega + 1)^F$. Let $p_\beta = \{A \subset \omega : K \subset A^*\}$ and note that F is of large oscillation mod p_β since $K \cap \cap \{f_i^+(n_i)^* : i = 1,\ldots,n\} \neq \emptyset$ for all $\{f_1,\ldots,f_n\} \subset F$ and $n_i \in \omega$. The following Fact is the key to the whole proof. Let $F = \{f_\alpha : \alpha < \kappa\}$ and let $X = (\omega + 1)^F$.

Fact 1. If $A \subset \omega$ then there is a countable set, $\text{supp}(A) \subset \kappa$ such that if $x \in G(A^* \cap K)$ and $y \in X$ with $y(f_\alpha) = x(f_\alpha)$ for $\alpha \in \text{supp}(A)$ then $y \in G(A^* \cap K)$, and $\text{supp}(A)$ is minimal with respect to this property.

Proof of Fact 1. Let $S = \bigcup \{\omega^H : H \in [F]^{<\omega}\}$ and for $s \in S$ let $[s]$ be the clopen subset of X given by $[s] = \{x \in X : s \subset x\}$. Recall that each non-empty open subset of X contains an element of $S' = \{[s] : s \in S\}$ and that any set of pairwise disjoint members of S' is countable. Now, for $A \subset \omega$, choose $T \in [S']^{<\omega}$ so that $T' = \{[t] : t \in T\}$ is a maximal collection of pairwise disjoint clopen subsets of $G(A^* \cap K)$. Clearly, $\bigcup T'$ is dense in $X \setminus G(K \setminus A^*)$. Therefore $G(G^+(\bigcup T')) \cap G(K \setminus A^*) = X$ and since $(G^+(\bigcup T')) \cap K \setminus A^*$ is closed, it follows that $G(A^* \cap K) = \overline{\bigcup T'}$. Let $\text{supp}_T(A) = \{\alpha : f_\alpha \in U(t : t \in T)\}$. Now since $x \in G(A^* \cap K)$ if and only if $x \in \overline{\bigcup T'}$ the proof of Fact 1 is complete if we can find a
minimal $\text{ supp}(A)$. Indeed $\text{ supp}(A) = \{ \alpha : \exists s \in S \text{ and } n < \omega \text{ such that } [s] \not\in G(A^* \cap K) \text{ and } [s \cup \{f_{\alpha}, n\}] \subseteq G(A^* \cap K) \}$. By definition $[\mathfrak{t}_s \text{ supp}(A)] \subseteq G(A^* \cap K)$ for each $t \in T$, so it suffices to show that $\text{ supp}(A) \subseteq \text{ supp}_T(A)$. Suppose $\alpha \in \text{ supp}(A)$ and s, n exhibit this fact. Then let $y \in [s] \setminus G(A^* \cap K)$ and let $x(f_\beta) = y(f_\beta)$ for $\beta \neq \alpha$ and $x(f_\alpha) = n$. Since $[s \cup \{f_\alpha, n\}] \subseteq G(A^* \cap K), x \in G(A^* \cap K)$. Since $\text{ supp}_T(A)$ has the first property stated in Fact 1 it follows that $\text{ supp}(A) \subseteq \text{ supp}_T(A)$ and we are done.

We define a chain of filters $\{p_\alpha : \alpha < \kappa \}$ so that if $\text{ supp}(A) \subseteq \alpha$ then A or $\omega \setminus A$ is in $p_{\alpha+1}$, if $A \in p_\alpha$ then $\text{ supp}(A) \subseteq \alpha$ and $\{f_\delta : \delta \geq \alpha \}$ is of large oscillation mod p_α. Suppose $\alpha < \kappa$ and we have defined $\{p_\gamma : \gamma < \alpha \}$. If α is a limit then let $p_\alpha = \bigcup\{p_\gamma : \gamma < \alpha \}$. Now suppose that $\alpha = \gamma + 1$ and let $H_\gamma = \{h \in \omega^\omega : L(p_\gamma, n, h) \text{ for } n < \omega \}$. Just as in 2.8, let p'_γ be the filter generated by $p_\gamma \cup \{\varphi(p_\gamma, n, h) : n > m \in \omega, h \in H_\gamma \}$. Extend p'_γ to a filter p_α maximal with respect to the property that $A \in p_\alpha$ implies $\text{ supp}(A) \subseteq \alpha$.

Let us check that $\{f_\delta : \delta \geq \alpha \}$ is of large oscillation mod p_α. First of all, by the minimality of $\text{ supp}(A)$ for $A \subseteq \omega$, it is clear that $\text{ supp}(A) \subseteq \alpha$ for $A \in p'_\gamma$. Now if $A \in p'_{\alpha'}$, then $\text{ supp}(A) \subseteq \alpha$ and also $G(K \cap A^*) \neq \emptyset$ because $p'_{\alpha'} \supseteq p_\alpha$. Choose $x \in G(K \cap A^*)$ and let $\{\delta_i : i = 1, \cdots, n\} \subseteq \kappa \setminus \gamma$ and $n_i \in \omega i = i, \cdots, n$. Let $y \in X$ be defined so that $\gamma(f_{\delta_i}) = n_i$ for $i = 1, \cdots, n$ and $\gamma(f_{\gamma}) = x(f_{\gamma})$ for $\gamma < \alpha$. By Fact 1, $y \in G(K \cap A^*)$ and clearly $y \in G(\cap (f_{\delta_i}^+(n_i)))$:
Therefore \(A^* \cap \mathcal{N}\{f^*_{\delta_1}(n_i)^* : i = 1, \ldots, n\} \neq \emptyset \) since \(\mathcal{N}\{f^*_{\delta_1}(n_i)^* : i = 1, \ldots, n\} \supseteq G^*(y) \).

Finally we must show that if \(p = \bigcup \{ p_{\alpha} : \alpha < \kappa \} \) then \(\kappa(p) = \kappa \). Indeed, let \(H \subseteq \omega^\omega \) with \(|H| < \kappa \) and suppose that \(L(p, n, h) \) for each \(n \in \omega \) and \(h \in H \). Let \(\gamma < \kappa \) be large enough so that for each \(n \in \omega \), \(h \in H \), \(\text{supp}(h^+(n, \omega)) \subseteq \gamma \). Therefore \(H \subseteq H_\gamma \) and by our construction \(L(p, n, f^+_{\gamma+1}, h) \) for each \(n \in \omega \) and \(h \in H \). Therefore \(\kappa(p) = \kappa \).

As mentioned above Roitman proved that 2.2 holds consistently. In fact her techniques can be used to prove much more; it is consistent that \(B^\omega/p \) can be \(\mathfrak{c} \)-saturated providing that \(B = \text{CO}(2^\omega) \).

2.9 Theorem [R]. If \(M \) is a model obtained by adding \(\omega_2 \) Cohen reals to a model of \(2^\omega = \omega_1 \), \(2^{\omega_1} = \omega_2 \), then there is a \(p \in U(\omega) \) such that \(\text{CO}(2^\omega)^\omega/p \) is \(\omega_2 \)-saturated.

This is also a theorem of MA (Martin's Axiom) and even \(\mathcal{P}(\mathfrak{c}) \). \(\mathcal{P}(\mathfrak{c}) \) holds if for each free filter \(p \) on \(\omega \) with \(|p| < \mathfrak{c} \) there is an infinite \(A \subseteq \omega \) so that \(|A \setminus D| < \omega \) for \(D \in p \).

2.10 Theorem. \(\mathcal{P}(\mathfrak{c}) \) There is a point \(p \in U(\omega) \) so that \(\text{CO}(2^\omega)^\omega/p \) is \(\mathfrak{c} \)-saturated. Furthermore \(p \) can be chosen to be a \(\mathcal{P}(\mathfrak{c}) \)-point.

Proof. \(\mathcal{P}(\mathfrak{c}) \) implies that \(2^\kappa = \mathfrak{c} \) for each \(\kappa < \mathfrak{c} \) and so we choose a listing \(\{(F_\gamma, G_\gamma) : \gamma < \mathfrak{c}\} \) of all pairs of subsets of size less than \(\mathfrak{c} \) of \(\text{CO}(2^\omega)^\omega \) so that each pair appears \(\mathfrak{c} \) times. Construct a chain of filters on \(\omega \),
\{p_\gamma : \gamma < \aleph_1\}$, so that $|p_\gamma| \leq \omega \cdot |\gamma|$ as follows. We set $p_\emptyset = \emptyset$, $p_1 = \text{cofinite}$. At limits we take unions and at successor steps we ensure that if $F \cup G$ is a chain under $L(p)$ and $L(p,F,G)$ then there is an $h \in B^\omega$ with $L(p_{\gamma + 1}, F, G)$ where $B = \{b_m : m \in \omega\} = CO(2^\omega) \setminus \{\emptyset\}$. Indeed, for $A \in p_\gamma$, $f \in F$, and $g \in G$, let $A_{f,g} = \{(k,m) : k \in A, f(k) < b_m < g(k)\}$. If $L(p,F,G)$, then $q_\gamma = \{A_{f,g} : A \in p, f \in F, g \in G\}$ is a filter base of cardinality less than \aleph_1. By $P(\omega)$, we choose $C \subseteq \omega \times \omega$ such that $|C \setminus A_{f,g}| < \omega$ for each $A_{f,g} \in q_\gamma$. Now since C is infinite and p_γ contains the cofinite filter, $D = \{k : C \cap \{k\} \times \omega \neq \emptyset\}$ is infinite. Define $h \in B^\omega$ so that, for $k \in D$, $h(k) = b_m$ implies $m \in C$.

Now if we let $p_{\gamma + 1}$ be the filter generated by $p_\gamma \cup \{D\}$ then $\{k \in D : f(k) \notin h(k) \text{ or } h(k) \notin g(k)\} \subseteq \{k : C \setminus A_{f,g} \cap \{k\} \times \omega \neq \emptyset\}$ and so is finite. Also $D \setminus A$ is finite for each $A \in p_\gamma$, hence $p = \cup p_\gamma$ is a P_{ω_1}-point. Now B^ω/p has no (κ,λ)-gaps for $\kappa,\lambda < \aleph_1$ and by a result in $[D]$ this ensures that it is \aleph_1-saturated.

3. Applications to Boolean Algebras and Topology

If B is an atomless boolean algebra and $p \in U(\omega)$, it follows from 1.1 that B^ω/p is an ω_1-saturated boolean algebra. It is well known that $P(\omega)/\text{fin}$ is ω_1-saturated and so it is natural to be interested in determining which properties B^ω/p and $P(\omega)/\text{fin}$ share and which they need not. In particular Balcar and Vojtas showed that each ultrafilter of $P(\omega)/\text{fin}$ has a disjoint refinement and asked for which other algebras is this true. Also van Douwen showed that this and some other properties of $P(\omega)/\text{fin}$ are shared...
by those ω_1-saturated boolean algebras of cardinality \mathfrak{c} whose Stone spaces map onto \(U(\omega) \) by an open map.

A point x in a space X is called a κ-point for a cardinal κ if there are κ disjoint open subsets of X such that x is in the closure of each. If $X = S(B)$ where B is an α^+-saturated boolean algebra and $\kappa = 2^\alpha$, then this is equivalent to the corresponding ultrafilter of B having a disjoint refinement (that is, there is a function f from $p S(B)$ to $B\setminus\{0\}$ such that $f(b) < b$ and $f(b) \land f(c) = 0$ for $b, c \in p$). A subset $\{b(i,j): (i,j) \in I \times J\}$ of B is called an $I \times J$-independent matrix if $b(i,j) \land b(i,j') = 0$ and $\land\{b(i,f(i)): i \in I'\} \neq 0$ for any $i \in I' \in [I]^{<\omega}$, $f \in J^{I'}$ and $j \neq j' \in J$. B has an $I \times J$-independent matrix if and only if $S(B)$ maps onto $(D(J) + 1)^I$ where $D(J) + 1$ has the product topology and $D(J) + 1$ is the one point compactification of the discrete space J. Kunen introduced independent matrices in [K2], he showed that $P(\omega)/\text{fin}$ has a $2^\omega \times 2^\omega$-independent matrix and used this to construct 2^ω-OK points. As mentioned above Balcar and Vojtas [BV] showed that every point of $U(\omega)$ is a 2^ω-point.

3.1 Theorem [vD]. Let B be an ω_1-saturated boolean algebra with $|B| = 2^\omega$ such that $S(B)$ maps onto $U(\omega)$ by an open map. (For example see the end of section 1).

(0) $S(B)$ has P-points if and only if $U(\omega)$ has P-points.

(1) B has a $2^\omega \times 2^\omega$-independent matrix.

(2) Every point of $S(B)$ is a 2^ω-point.
(3) If \(P(\omega)/\text{fin} \) has an \((\omega,\lambda)\)-gap then so does \(B \).

(In particular \(B \) has an \((\omega,b)\)-gap and it is consistent that \(b < \lambda \)).

Now let \(\alpha \) be an infinite cardinal and let \(B \) be any atomless boolean algebra with \(|B| \leq 2^\alpha \). Also let \(p \) be an \(\omega \)-incomplete \(\alpha^+ \)-good ultrafilter on \(\alpha \).

3.2 Theorem. (0) \(S(B^\alpha/p) \) has a dense set of \(P^\alpha \)-points.

(1) \(B^\alpha/p \) has a \(2^\alpha \times 2^\alpha \)-independent matrix.

(2) Each point of \(S(B^\alpha/p) \) is a \(2^\alpha \)-point.

(3) \(B^\alpha/p \) has an \((\omega_1,\kappa)\)-gap if and only if \(\kappa = \kappa(i,p) \)

for each regular \(\omega_1 < \alpha \).

3.2 (0) Proof. Let \(f \in (B\setminus\{0\})^\alpha \) and for each \(\gamma < \alpha \) choose \(y_\gamma \in S(B) \) so that \(f(\gamma) \in y_\gamma \). We show that \(x = \{ g \in B^\alpha/p : g(\gamma) \in y_\gamma \text{ for } \gamma \in \alpha \} \) is a \(P^\alpha \)-point of \(S(B^\alpha/p) \). Indeed, let \(\{ g_\delta : \delta < \alpha \} \subseteq x \) and \(\{ A_n : n \in \omega \} \subseteq p \) so that \(\cap A_n = \emptyset \). Define \(W: [\alpha]^{<\omega} \to p \) by \(W(H) = A|_H \cap \{ \gamma < \alpha : g_\delta(\gamma) \in y_\gamma \text{ for } \delta \in H \} \). Now let \(V: [\alpha]^{<\omega} \to p \) be a multiplicative function refining \(W \). As usual, for each \(\gamma \in \alpha \), \(H_\gamma = \{ \delta \in \alpha : \gamma \in V(\{\delta\}) \} \) is finite. Also, since \(V(H_\delta) \subseteq W(H_\delta) \) and \(B \) is atomless we may choose \(g(\gamma) \in y_\gamma \) so that \(g(\gamma) < g_\delta(\gamma) \) for \(\delta \in H_\gamma \). It follows that \(g \in x \) and that \(L(p,g,g_\delta) \) for each \(\delta < \alpha \).

3.2 (1) Proof. Since \(B \) is atomless we may choose \(\{ b(n,m) : n,m \in \omega \} \subseteq B \) to be an \(\omega \times \omega \)-independent matrix (i.e. \(S(B) \) maps onto \((\omega + 1)^\omega \)). For each \(f,g \in \omega^\alpha/p \) define \(a_{fg} \in B^\alpha \) by \(a_{fg}(\gamma) = b(f(\gamma),g(\gamma)) \). We verify that
\{a_{fg}: f, g \in \omega^\alpha/p\} is an independent matrix. Indeed, if
f, g, h \in \omega^\alpha with L(p, g, h) then \{\gamma \in \alpha: a_{fg}(\gamma) \land a_{fh}(\gamma) = 0\} =
\{\gamma \in \alpha: b(f(\gamma), g(\gamma)) \land b(f(\gamma), h(\gamma)) = 0\} = \{\gamma \in \alpha: g(\gamma) \neq
h(\gamma)\} \in p. Similarly if F is a finite subset of \omega^\alpha/p and
G is a function from F into \omega^\alpha/p then \{\gamma \in \alpha: \land\{a_{fg}, G(f)(\gamma):
f \in F\} \neq 0\} \supset \{\gamma \in \alpha: \land\{b(f(\gamma), G(f)(\gamma)): f \in F \neq 0\}\supset
\{\gamma \in \alpha: |\{f(\gamma): f \in F\}| = |F|\} \in p.

Before we prove 3.2(2) we prove a result which is
proven about P(\omega)/fin in [BV] although it is not stated
explicitly.

3.3 Lemma. If \lambda \leq \alpha and \{a_\eta: \eta < \lambda\} \subset B^\alpha/p with
a_\eta \land a_\xi = 0 for \eta < \xi < \lambda then the set C = \{b \in B^\alpha/p:
\{n: b \land a_\eta \neq 0\}\} is infinite has a disjoint refinement.

Proof. Let \{A_m: m \in \omega\} \subset p with \bigcap A_m = \emptyset and for
H \in [\lambda]^\omega define W(H) = \{\gamma \in \alpha: a_\eta(\gamma) \neq 0 and a_\eta(\gamma) \land a_\xi(\gamma)
= 0 for \eta \neq \xi and \eta, \xi \in H\} \cap A_{|H|}. Let V be a multiplicative
map from [\lambda]^\omega to p which refines W. Let C = \{c_\delta:
\delta \in 2^\alpha\} and define \textbf{I}_\delta = \{\eta \in \lambda: L(p, 0, c_\delta \land a_\eta)\}. Also let
H_\gamma = \{\eta \in \lambda: \gamma \in V(\{\eta\})\} and define S^\delta_\gamma = \{a_\eta(\gamma): \eta \in H_\gamma \cap \textbf{I}_\delta
and a_\eta(\gamma) \land c_\delta(\gamma) \neq 0\} (and S^\delta_\gamma = \emptyset if this is empty) for
each \gamma < \alpha and \delta < 2^\alpha. Now if H \in [\textbf{I}_\delta]^\omega, \{\gamma \in \alpha:
|S^\delta_\gamma| > |H|\} \supset V(H) \cap \{\gamma \in \alpha: c_\delta(\gamma) \land a_\eta(\gamma) \neq 0 for
\gamma \in H\} \in p. Therefore, by 1.2, |\Pi_{\gamma < \alpha} S^\delta_\gamma/p| = 2^\alpha for each
\delta \in 2^\alpha. It follows, therefore, that for \delta \in 2^\alpha, we may
choose d_\delta \in \Pi_{\gamma < \alpha} S^\delta_\gamma/p so that E(p, 0, d_\delta \land a_\eta) for \eta < \lambda and
\lnot E(p, d_\delta, d_\beta) for \beta < \delta < 2^\alpha. Now let \beta < \delta < 2^\alpha, we show
that E(p, 0, d_\delta \land d_\beta). Indeed, let \eta_0 \in \textbf{I}_\beta and \eta_1 \in \textbf{I}_\delta be
arbitrary and let \(\gamma \in V(\{\eta_0\}) \cap V(\{\eta_1\}) \cap \{ \gamma \in \alpha : d_\beta(\gamma) \neq d_\delta(\gamma) \} \in p \). Now, by choice of \(\gamma \), if \(d_\delta(\gamma) = a_\eta(\gamma) \) and \(d_\beta(\gamma) = a_\xi(\gamma) \) then \(\{\eta, \xi\} \in H_\gamma \) and so \(\gamma \in V(\{\eta, \xi\}) \subseteq W(\{\eta, \xi\}) \) which implies \(a_\eta(\gamma) \land a_\xi(\gamma) = 0 \). Therefore, for \(\delta < 2^\alpha \) and \(\gamma < \alpha \), let \(e_\delta(\gamma) = d_\delta(\gamma) \land c_\delta(\gamma) \) and we have our disjoint refinement.

Similarly one can prove that if \(\{a_\eta : \eta < \lambda\} \subseteq B^a/p \) is an increasing chain (with \(\lambda \) a limit) then \(C = \{b \in B^a/p : \{\eta : b \land a_\eta = a_\xi \neq 0 \text{ for } \xi < \eta\} \text{ is cofinal in } \lambda\} \) has a disjoint refinement.

3.2 (2) Proof. Let \(x \in S(B^a/p) \) and suppose that \(\{a_\eta : \eta < \lambda\} \subseteq B^a/p \) is chosen with \(\lambda \) minimal such that

\(\{a_\eta : \eta < \lambda\} \) is an increasing chain, \(x \not\in \{a_\eta^* : \eta < \lambda\} \) (i.e. \(a_\eta \not\in x \) for \(\eta < \lambda \)) and for \(a \in x \) there is an \(\eta < \lambda \) with \(a \land a_\eta \neq 0 \) (i.e. \(x \in cl \cup a_\eta^* \)). Let \(a_\lambda = 1 \) and for each \(\gamma \leq \lambda \) with \(cf(\gamma) = \omega \) let \(C_\gamma = \{b \in B^a/p : b \leq a_\gamma \) and \(\{\eta \leq \gamma : b \land a_\eta - a_\xi \neq 0 \text{ for } \xi < \eta\} \) is cofinal in \(\gamma \} \). By Lemma 3.3 (with \(\lambda = \omega \)), the set \(C_\gamma \) has a disjoint refinement \(C'_\gamma \) so that for \(c \in C'_\gamma, c \leq a_\gamma \land a_\eta \) for \(\eta < \gamma \). Therefore

\(\cup\{C'_\gamma : \gamma \leq \lambda \text{ with } cf(\gamma) = \omega\} \) is a disjoint refinement of

\(\cup\{C_\gamma : \gamma \leq \lambda, cf(\gamma) = \omega\} \). To complete the proof it suffices to show that for \(a \in x \) there is a \(\gamma \leq \lambda \) with \(cf(\gamma) = \omega \) and \(a \land a_\gamma \in C_\gamma \). Indeed choose \(\gamma_0 < \lambda \) so that \(a \land a_{\gamma_0} \neq 0 \).

If we have chosen \(\gamma_n < \lambda \) choose \(\gamma_{n+1} < \lambda \) so that \(a - a_{\gamma_n} \land a_{\gamma_{n+1}} \neq 0 \). Now if \(\gamma = sup\{\gamma_n : n \in \omega\} \) we have that \(a \land a_\gamma \in C_\gamma \).
3.2 (3) Proof. This is just 1.4.

3.4 Corollary. $2^\omega > \omega_1$ implies there are $p, q \in U(\omega)$ so that $[\co(2^\omega)]^\omega/p \neq [\co(2^\omega)]^\omega/q$ and $S([\co(2^\omega)]^\omega/p)$ does not map onto $U(\omega)$ by an open map.

Proof. This follows from 2.2, 3.1(3) and 3.2(3).

Let $B = \co(2^\omega)$ and let M be the model of set theory described in 2.9. Kunen has shown that in this model $P(\omega)/\text{fin}$ has no chains of order type ω_2. However if we let $p \in U(\omega)$ be chosen so that B^ω/p is ω_2-saturated as in 2.9 we have the following result.

3.5 Proposition. It is consistent that there is a $p \in U(\omega)$ such that $P(\omega)/\text{fin}$ embeds into B^ω/p but B^ω/p does not embed into $P(\omega)/\text{fin}$. Equivalently $S(B^\omega/p)$ maps onto $U(\omega)$ but $U(\omega)$ does not map onto $S(B^\omega/p)$.

In [BFM], the authors introduce a condition which they call (*) where (*) is the statement "each closed subset of $U(\omega)$ is homeomorphic to a nowhere dense P_ω-set of $U(\omega)$." They show that CH implies (*) and that $\text{MA + c} = \omega_3$ implies (*) is false. We verify their conjecture that (*) implies CH. A subset of K of a space X is a P_α-set if the filter of neighborhoods of K is α-complete (K is a P-set if it is a P_ω-set).

3.6 Lemma. If $K \subset U(\omega)$ is a closed P_α-set and for some κ, λ with $\omega \leq \kappa \leq \alpha$ and $\omega \leq \lambda$, $\co(K)$ has a (κ, λ)-gap then $\co(U(\omega))$ has a (κ, λ')-gap for some $\omega \leq \lambda' \leq \lambda$.
Proof. Let \(\{a_\gamma : \gamma < \kappa \} \cup \{b_\beta : \beta < \lambda \} \subset \text{CO}(K) \) so that
\[\gamma_1 < \gamma_2 < \kappa \text{ and } \beta_1 < \beta_2 < \lambda \implies a_{\gamma_1} < a_{\gamma_2} < b_{\beta_2} < b_{\beta_1}. \]
Choose \(\{a'_\gamma : \gamma < \kappa \} \subset \text{CO}(U(\omega)) \) so that \(a'_\gamma \cap K = a_\gamma \) for \(\gamma < \kappa \).
For each \(\gamma < \kappa \), we can find \(U_\gamma \in \text{CO}(U(\omega)) \) so that \(K \subset U_\gamma \)
and \(U_\gamma \cap a'_\gamma - a'_\delta = \emptyset \) for \(\delta < \gamma \). Also since \(\kappa < \omega \), there is
a \(U \) in \(\text{CO}(U(\omega)) \) with \(K \subset U \) so that \(U \subset U_\gamma \) for \(\gamma < \kappa \). Therefore we may suppose that \(a'_\delta \subset a'_\gamma \) for \(\delta < \gamma < \kappa \). Now, choose
for as long as possible, \(b'_\beta \in \text{CO}(U(\omega)) \) so that \(b'_\beta \cap K = b_\beta \)
and \(a'_\gamma \subset b'_\beta \subset b'_\delta \) for \(\delta < \beta \) and \(\gamma < \kappa \). Therefore, for some \(\lambda' < \lambda \), we cannot choose \(b_{\lambda'} \), and we have a gap in \(\text{CO}(U(\omega)) \).

3.7 Proposition. If \(\beta \omega \) embeds into \(U(\omega) \) as a \(P_\alpha \)-set then \(b \geq \alpha \).

Proof. Suppose that \(\{p_n : n \in \omega \} \) is a discrete subset
of \(U(\omega) \) such that \(K = \text{cl}_{\beta \omega} \{p_n : n \in \omega \} \) is a \(P_\alpha \)-set (it is
well known that \(K \) is homeomorphic to \(\beta \omega \)). Choose pairwise
disjoint subsets \(\{A_n : n \in \omega \} \) of \(\omega \) so that \(A_n \in P_n \), and fix
an indexing \(A_n = \{a(n,m) : m \in \omega \} \) for each \(n \in \omega \). Let
\(F \subset \omega^\omega \) with \(|F| < \alpha \); we show that \(F \) is bounded. For each
\(f \in F \), let \(B_f = \{a(n,m) : n \in \omega \text{ and } m > f(n) \} \). Clearly
\(K \subset B_f^\star \) for \(f \in F \) and so we may choose \(B \subset \omega \) so that \(K \subset B^\star \)
and \(|B \setminus B_f| < \omega \) for \(f \in F \). Let \(g \in \omega^\omega \) be defined by
g(n) = \text{min}\{m : a(n,m) \in B \} \text{ and observe that } f <^* g \text{ for } f \in F.

3.8 Theorem. \((*) \) is equivalent to \(\text{CH} \).

Proof. Clearly if \((*) \) is true then \(\beta \omega \) must embed in
\(U(\omega) \) as a \(P_\omega \)-set. Therefore by 3.7 it suffices to show that
\(b = \omega_1 \). Now let \(p \in U(\omega) \) be chosen so that \(\kappa(p) = \omega_1 \).
Let \(\{a_n : n \in \omega \} \subset \text{CO}(U(\omega)) \) be pairwise disjoint and let
\[\mathcal{K}^P = \cap \left\{ \text{cl}_{\text{U}(\omega)} \ U \left\{ a_n : n \in \omega \right\} : A \in p \right\}. \] It is well known that \(\text{cl}_{\text{U}(\omega)} \ U \left\{ a_n : n \in \omega \right\} = \beta(\omega \times \text{U}(\omega)) \). Therefore \(\text{CO}(\mathcal{K}^P) = [\text{CO}(\text{U}(\omega))]^\omega/p \) and by 1.4 has an \((\omega, \omega_1)\)-gap. By 3.6, if \(\mathcal{K}^P \) embeds into \(\text{U}(\omega) \) as a \(\mathcal{P}_c \)-set with \(\mathcal{C} > \omega_1 \) then \(b = \omega_1 \).

3.9 Remark. It is not difficult to show that if \(A \) is a boolean algebra which has an \((\omega_1, \omega_1)\)-gap then so does \(A^\omega/p \) for each \(p \in \text{U}(\omega) \) and is therefore not \(\omega_2 \)-saturated. This means that we cannot easily obtain compact subsets \(K \) of \(\text{U}(\omega) \) so that \(\text{CO}(K) \) is \(\omega_2 \)-saturated (such as subsets of the boundary of a cozero set). However \(S(B^\omega/p) = \mathcal{K}^P \) as in 3.5 is in some sense a "well-placed" subset of \(\beta(\omega \times 2^\omega) \). For instance \(\mathcal{K}^P \) is a \(2^\omega \)-set in \((\omega \times 2^\omega)^* = \beta(\omega \times 2^\omega) \setminus (\omega \times 2^\omega) \) (see [BV]). Furthermore we can easily construct \(p \) to be \(2^\omega \)-OK (see [K2]) in which case every \(\text{ccc} \) subspace of \((\omega \times 2^\omega)^* \) meets \(\mathcal{K}^P \) in a nowhere dense set. Furthermore if we use 2.10 to find \(p \) a \(\mathcal{P}_c \)-point then \(\mathcal{K}^P \) is a \(\mathcal{P}_c \)-set in \((\omega \times 2^\omega)^* \). I do not know if it is possible to find a \(\mathcal{P}_{\omega_2} \)-set \(K \) in \(\text{U}(\omega) \) such that \(\text{CO}(K) \) is \(\omega_2 \)-saturated. Although Shelah has found a model in which \(\text{U}(\omega) \) is not homeomorphic to \((\omega \times 2^\omega)^* \) (see [vM]) it would be interesting if they were not in one of the above models.

After acceptance of this paper, John Merrill brought it to the author's attention that 2.2 and a more general version of 2.3 appear in Shelah's Model Theory book. However as the proofs presented here seem simpler we have chosen to include them.
References

[vD] E. K. van Douwen, Transfer of information about \(\mathbb{N} \) via open remainder maps (preprint).

University of Toronto

Toronto, Ontario, Canada M5S 1A1