TWO NORMAL LOCALLY COMPACT SPACES UNDER MARTIN’S AXIOM

by

GARY GRUENHAGE
1. Introduction

In [W], S. Watson showed that under \(V = L \), every normal locally compact space is collectionwise \(\mathbb{T}_2 \) (i.e., every closed discrete collection of points can be separated by a disjoint collection of open sets), and asked if one could go further and get collectionwise normality (i.e., every closed discrete collection of closed sets can be separated). He also asked if in fact the statement

\[(*) \) "normal + locally compact + collectionwise \(\mathbb{T}_2 \) \(\Rightarrow \) collectionwise normal"

might be a theorem of ZFC. P. Daniels and the author [DG] answered these questions in the negative by constructing, under \(V = L \), a perfectly normal locally compact collectionwise \(\mathbb{T}_2 \) non-collectionwise normal space. Now, under MA + \(\neg \text{CH} \), a perfectly normal counterexample to (*) is impossible: under MA + \(\neg \text{CH} \), every perfectly normal locally compact collectionwise \(\mathbb{T}_2 \) space is paracompact (see [G] or [B1]). However, in this note, we will show that MA + \(\neg \text{CH} \) can be used to construct a normal counterexample. It remains unknown whether or not there is a real counterexample to (*).

In [B2], Z. Balogh showed that, under \(2^{\omega_1} > 2^\omega \), every connected locally compact normal Moore space is metrizable.

*Work done while supported by NSF grant MCS-8301932.
(or more generally, every connected locally compact normal submetralindelöf space is paracompact). Earlier, Reed and Zenor [RZ] had shown that the above result is a theorem of ZFC if one replaces "connected" by "locally connected" (and Balogh [B₃] has also shown that the corresponding result about covering properties is a theorem of ZFC in this case).

Our second example is a rather simple modification of the Cantor tree which, under MA + \neg CH, is a connected locally compact normal non-metrizable Moore space, and thus shows that the assumption \(2^{\omega_1} > 2^{\omega}\) is necessary in Balogh's theorem.

2. The First Example

Example 1 (MA + \neg CH). A normal locally compact collectionwise \(T_2\) non-collectionwise normal space.

In [DG], P. Daniels and the author show that a certain modification of the "Kunen line" construction [JKR] applied to Fleissner's CH example [F] of a normal non-metrizable Moore space gave an example of a perfectly normal locally compact collectionwise \(T_2\) non-collectionwise normal space (in L). Here we show that applying a similar modification of the "van Douwen line" construction [vD] to C. Navy's MA + \neg CH example [N] of a normal paralindelöf (hence collectionwise \(T_2\)) non-collectionwise normal Moore space yields a space with the properties of Example 1.

First, let us recall Navy's example: under MA + \neg CH, there is a normal paralindelöf (hence collectionwise \(T_2\)) non-collectionwise normal Moore space \(Y\), having the form
Y = M U J, where M = \omega_1^\omega is the product of countably many discrete spaces of size \omega_1 and forms a closed metrizable subset of Y, and J is a set of \omega_1 isolated points. (For later convenience, we have made here a trivial modification of Navy's space--her space as presented included only increasing functions in \omega_1^\omega, and had \omega^\omega many isolated points.)

Now let us recall the key to van Douwen's construction. This construction generates a finer locally compact locally countable topology on the real line such that, if H and K are disjoint closed sets in the new topology, then \text{cl}_R(H) \cap \text{cl}_R(K) is countable (this latter fact was the key to proving normality). Here we will construct a finer locally compact locally countable topology \tau' on Navy's space (Y,\tau) such that, if H and K are closed disjoint in (Y,\tau'), then \text{cl}_\tau(H) \cap \text{cl}_\tau(K) is \sigma-discrete. (By "\sigma-discrete," we mean "\sigma-closed discrete.") We should point out that van Douwen's construction can be done in ZFC; for our construction, on the one hand we don't need MA + \neg CH anymore once we are given Navy's example, but on the other hand we still need \omega^\omega = 2^{\omega_1}.

We begin by letting \{x_\alpha : \alpha < \omega_1\} index Y, where \{x_\alpha : \alpha < \omega_1\} = J, and letting \{(A_\alpha, B_\alpha) : \omega_1 \leq \alpha < \omega_1\} index all pairs (A,B) of subsets of Y of size \leq \omega_1 (here's where \omega^\omega = 2^{\omega_1} is used) such that

(i) |\text{cl}_\tau(A) \cap \text{cl}_\tau(B)| = \omega_1.

It is not difficult to check, by a simple transfinite induction argument, that one can reindex these sequences
to satisfy the following conditions:

(ii) \(A_\alpha \cup B_\alpha = \{ x_\beta : \beta < \alpha \} \), and

(iii) \(x_\alpha \in \text{cl}_\tau (A_\alpha) \cap \text{cl}_\tau (B_\alpha) \).

We will assume that our original indexing satisfies these conditions.

We now inductively define a locally compact locally countable topology \(\tau_\alpha \) on \(\{ x_\beta : \beta < \alpha \} \), finer than the subspace topology in \((Y, \tau) \), such that \(\beta < \alpha \) implies \(\tau_\beta \subseteq \tau_\alpha \), and such that \(x_\alpha \in \text{cl}_\tau (A_\alpha) \cap \text{cl}_\tau (B_\alpha) \) for all \(\omega_1 \leq \alpha < \omega \). Let \(\tau_\alpha, \alpha \leq \omega_1 \), be the discrete topology. If \(\tau_\beta \) has been defined for all \(\beta < \alpha \), where \(\omega_1 < \alpha < \omega \), we consider two cases:

Case I. \(\alpha \) is a limit ordinal. In this case, simply let \(\tau_\alpha \) be the topology generated by \(U_{\beta < \alpha} \tau_\beta \).

Case II. \(\alpha = \gamma + 1 \). In this case, \(\{ x_\beta : \beta < \alpha \} = \{ x_\beta : \beta \leq \gamma \} \), and \(\tau_\gamma \) defines a base for all these points except \(x_\gamma \), so we need to define a base for \(x_\gamma \). Since \(x_\gamma \in \text{cl}_\tau (A_\gamma) \cap \text{cl}_\tau (B_\gamma) \), we can choose a sequence \(\{ y_n \} \) converging to \(x_\gamma \) in \(\tau \), with \(\{ y_n \}_{n \in \omega} \subseteq A_\gamma \cup B_\gamma \subseteq \{ x_\beta : \beta < \gamma \} \), such that both \(A_\gamma \) and \(B_\gamma \) contain infinitely many \(y_n \)'s. In \((Y, \tau) \), there exists a disjoint collection \(\{ U_n \}_{n \in \omega} \) of open sets with \(y_n \in U_n \) such that \(x_\gamma \) is the unique limit point of this collection. Since \(\tau_\gamma \) is finer than \(\tau \), one can find compact open sets \(V_n \) in \(\tau_\gamma \) with \(y_n \in V_n \subseteq U_n \). Declare basic neighborhoods of \(x_\gamma \) to have the form

\[B_m(x_\gamma) = \{ x_\gamma \} \cup (U_{n \geq m} \cap V_n) \]

and let \(\tau_\alpha \) be the topology on \(\{ x_\beta : \beta \leq \gamma \} \) generated by

\[\tau_\gamma \cup \{ B_m(x_\gamma) : m \in \omega \}. \]
Let $\tau' = \bigcup\{\tau_\alpha : \alpha < \mathfrak{c}\}$. We claim that (Y, τ') satisfies the conditions of Example 1. To facilitate the proof, we begin by establishing a few facts.

Fact 1. If $H \subseteq Y$, then H has a dense σ-discrete (in τ) subset of size $\leq \omega_1$.

Proof. This is trivial since $Y = M \cup J$, where M is a metric space of weight ω_1, and J is a σ-discrete set of ω_1 isolated points.

Fact 2. If H is closed in (Y, τ), and $|H| < \mathfrak{c}$, then H is σ-discrete (in τ).

Suppose H is closed, $|H| < \mathfrak{c}$, but H is not σ-discrete. We can assume $H \subseteq M$. Then H, being paracompact, cannot be locally σ-discrete—by first countability, there must be at least two points in H every neighborhood of which is not σ-discrete. Thus there exist disjoint relatively clopen subsets K_0 and K_1 of H, of diameter less than 1, neither of which is σ-discrete. Now there exist non-σ-discrete K_{ij}, $j = 0,1$, of diameter less than $1/2$ contained in K_i, $i = 0,1$, and $K_{ijk} \subseteq K_{ij}$, ..., so we see that H contains a copy of the Cantor set, which is a contradiction.

The following fact is the one that really makes this construction work.

Fact 3. If H and K are disjoint closed subsets of (Y, τ'), then

$$\text{cl}_\tau(H) \cap \text{cl}_\tau(K) \text{ is } \sigma\text{-discrete in } \tau.$$
Proof. Suppose not. Then by Fact 2, $|\text{cl}_\tau(H) \cap \text{cl}_\tau(K)| = c$. Let A and B be dense (in τ) subsets of H and K, respectively, with $|A \cup B| \leq \omega_1$. Then $(A, B) = (A_\alpha, B_\alpha)$ for some α, hence by the construction $x_\alpha \in \text{cl}_\tau(A_\alpha) \cap \text{cl}_\tau(B_\alpha) \subset H \cap K$, a contradiction.

(Y, τ') is normal. Let H and K be disjoint closed sets in (Y, τ'). We will prove that H is contained in the union of countably many open sets whose closures miss K. By symmetry the same will be true of K with respect to H, so H and K can be separated.

By Fact 3, $H \cap \text{cl}_\tau(K) = \bigcup_{n \in \omega} D_n$, where each D_n is closed discrete in τ. Since τ is collectionwise T_2 and normal, there exists a discrete in τ collection $\bigcup_n = \{U_d : d \in D_n\}$ separating the points of D_n. For each $d \in D_n$, let V_d be a compact open set in τ' with $d \in V_d \subset U_d$ and $V_d \cap K = \emptyset$. Then $\{V_d : d \in D_n\}$ is a discrete collection of clopen sets in τ', so $O_n = \bigcup\{V_d : d \in D_n\}$ is clopen in τ', and $O_n \cap K = \emptyset$. Now let $Y - \text{cl}_\tau(K) = \bigcup_{n \in \omega} W_n$, where each W_n is open and $W_n \cap \text{cl}_\tau(K) = \emptyset$. (We are using the fact that (Y, τ) is perfectly normal here.) Then $\{O_n \cup W_n : n \in \omega\}$ is the desired countable collection of open sets covering H whose closures miss K.

(Y, τ') is collectionwise T_2. Let D be a closed discrete subset of (Y, τ'). Let $A \subset D$ be a dense σ-discrete (in τ) subset of D of size $\leq \omega_1$. Since A is closed in τ', from the construction we see that the pair (A, A) never appears in the list $\{(A_\alpha, B_\alpha) : \omega_1 \leq \alpha < c\}$. It follows that $|\text{cl}_\tau(A)| < c$, whence $\text{cl}_\tau(A)$, and hence D, is σ-discrete.
in \(\tau \). Thus \(D = \bigcup_{n \in \omega} D_n \), where each \(D_n \) can be separated (in \(\tau \) and \(\tau' \)). By normality, \(D \) can be separated in \(\tau' \).

\((Y, \tau') \) is not collectionwise normal. Let \(H \) be a discrete collection of closed subsets of \(M \) which cannot be separated in \((Y, \tau) \). We will show that \(H \) can't be separated in \((Y, \tau') \) either. Suppose on the contrary that \(\{ U_H : H \in H \} \) is a disjoint collection of \(\tau' \)-open sets with \(H \subseteq U_H \). We aim for a contradiction by showing that \(H \) can be covered by a \(\sigma \)-discrete collection \(V \) of \(\tau \)-open sets such that the closure of each member of \(V \) meets at most one element of \(H \)--by a standard substractation argument, this would imply that \(H \) can be separated in \(\tau \).

To this end, let \(O_H \supset H \) be open in \(\tau \) such that \(\text{cl}_\tau(O_H) \cap (\bigcup\{ U'_H : H' \in H, H' \neq H \}) = \emptyset \). Without loss of generality, \(U_H \subseteq O_H \). Now \(H \) and \(Y - U_H \) are disjoint closed subsets of \((Y, \tau') \). By Fact 3, \(H \cap \text{cl}_\tau(Y - U_H) \) is \(\sigma \)-discrete.

Since \((Y, \tau) \) is collectionwise \(T_2 \), there exists a \(\sigma \)-discrete collection \(V_1 \) covering \(\{ H \cap \text{cl}_\tau(Y - U_H) : H \in H \} \), such that each \(V \in V_1 \) is \(\tau \)-open and \(\overline{V} \) meets at most one \(H \in H \). Now consider \(V_H = Y - \text{cl}_\tau(Y - U_H) \). Then \(\{ V_H : H \in H \} \) is a disjoint collection of \(\tau \)-open sets covering \((\bigcup H) - (\bigcup V_1) \).

By perfect normality of \((Y, \tau) \), we can write \(V_H = \bigcup_{n \in \omega} V_{H,n} \) such that for each \(n \), \(\{ V_{H,n} : H \in H \} \) is a discrete collection of \(\tau \)-open sets. Let \(V_2 = \{ V_{H,n} : H \in H, n \in \omega \} \). Then \(V = V_1 \cup V_2 \) is our desired \(\sigma \)-discrete cover of \(\bigcup H \). That completes the proof.
3. The Second Example

Example 2. (MA + \neg CH). A connected locally compact normal non-metrizable Moore space.

Let T be the Cantor tree, i.e., the n^{th} level of T is the set 2^n of all functions from n into 2, and $t_1 \leq t_2$ if and only if t_2 extends t_1. Let A be a subset of size ω_1 of the Cantor set 2^ω, and let $X = T \cup A$ be the space in which the elements of T are isolated, and a basic neighborhood of a point $x \in A$ is a tail of the sequence $(x|n)_{n \in \omega}$ in T, together with x itself. It is well-known (see, for example, [R]) that X is a locally compact non-metrizable Moore space, and is normal under MA + \negCH.

Now fix some $x_0 \in A$ and "connect up" the sequence $(x_0|n)_{n \in \omega}$ by putting an arc (i.e., a copy of $[0,1]$) between $x_0|n$ and $x_0|n+1$ for each $n \in \omega$, so that in the resulting space X', we have a connected path from $x_0|0$ to x_0 which contains $x_0|n$ for all n. Clearly X' is still a normal (under MA + \negCH) locally compact Moore space.

Let $Y = (X' \times [0,1]) - (A \times \{1\})$. Now $X' \times [0,1]$ is still a locally compact normal Moore space, and, since it's an open subspace of $X' \times [0,1]$, Y is too. Let $\{t_n: n \in \omega\}$ enumerate the elements of $T - \{x_0|n: n \in \omega\}$. Finally, let Z be the quotient space of Y obtained by identifying $(t_n',1)$ with $(x_0|n,1)$ for each n. We claim that Z satisfies the conditions of Example 2.

Let $f: Y \rightarrow Z$ be the quotient map. Since $A \times \{1\}$ is "missing", it is easy to check that f is a closed, hence perfect, map. It follows that Z is a normal locally compact
Moore space, and is non-metrizable since it contains a copy of X. So it remains to prove that Z is connected.

Let S be the arc from $x_0|0$ to x_0 that was added to X to get X'. Notice that the image under f of $(T \cup S) \times [0,1]$ is connected, since we connected every $\{t\} \times [0,1]$, t not in $\{x_0|n: n \in \omega\}$, "at the top" via f to some $\{x_0|n\} \times [0,1] \subset S \times [0,1]$. Thus Z has a dense connected subset, hence is connected.

References

Auburn University

Auburn, Alabama 36849