BURKE’S THEOREM FROM PRODUCT CATEGORY EXTENSION AXIOM

by

WILLIAM G. FLEISSNER
Recently, Burke [B] assumed the Product Measure Extension Axiom and proved several statements, including "countably paracompact Moore spaces are metrizable." Soon afterwards, Tall [T] showed that these statements hold in models constructed by adding supercompact many Cohen reals. In this note we show that Burke's statements follow from the Product Category Extension Axiom (PCEA). PCEA holds in models constructed by adding strongly compact many Cohen reals [F]. The combinatorics which allow us to do measure-like arguments in $\text{Reg}(\text{Open}(\mathbb{N}))$ are due to Dow [D].

We consider \mathbb{N} to be the countable discrete space and \mathbb{N}^I to have the Tychonoff, finite support product topology. Basic open sets have the form $[\eta]^I = \{f \in \mathbb{N}^I : \eta < f\}$, where η is a function from a finite subset of I to \mathbb{N}. We denote the cardinality of a set S by $|S|$. Thus $[\eta]$ cuts on $|\eta|$ coordinates. The regular open subsets of a space X form a complete Boolean algebra $\text{Reg}(\text{Open}(X))$.

PCEA is the assertion that for every index set I, there is $J > I$ and a τ-complete Boolean homomorphism $H: P(\mathbb{N}^I) \to \text{Reg}(\text{Open}(\mathbb{N}^J))$ such that $h([\eta]^I) = [\eta]^J$ for all basic open sets $[\eta]^I$.

\[1\] Partially supported by NSF grant DMS-8401003.
Theorem 1 [D]. For every index set I there is a nested decreasing sequence $(L_n)_{n \in \omega}$ of subsets of the regular open algebra of N^I satisfying for each n

a) if $\sup \{ b_j : j \in \omega \} = 1$, then there is $k \in \omega$ such that $\sup \{ b_j : j < k \} \in L_n$

b) if $b_1, \ldots, b_n \in L_n$ and $|n| = n$, then $b_1 \wedge \cdots \wedge b_n \wedge [n] \neq \emptyset$.

If we assume PCEA, we can pull back Dow's Lemma to $P(N^I)$. For $A \in P(N^I)$, we will write $A \in L^*_n$ if $h(A) \in L_n$.

We will present one version of Burke's result below, and leave the versions with countable paracompactness and/or character below to the reader.

Theorem 2. Assume PCEA. Let $Y = \{ Y_i : i \in I \}$ be a discrete collection of closed sets in a countably metacompact first countable space X. There is a family of collections of open sets $\mathcal{H} = \{ H_n : n \in \omega \}$, where $H_n = \{ H^n_i : i \in I \}$, satisfying

a) $Y_i \subseteq H^n_i$ for all n and i, and

b) for all $x \in X$ there is $n \in \omega$ such that $\{ i \in I : x \in H^n_i \}$ is finite.

Proof. Let $Z = X - \cup Y$.

For each $f \in N^I$, consider the countable open cover $U_f = \{ Z \cup U(Y_i : f(i) = m) : m \in \omega \}$. Apply countable metacompactness get a point finite refinement of U_f, $V_f = \{ V_{mf} : m \in \omega \}$. If $y \in Y_i$ and $f(i) = m$, let $V_{yf} = V_{mf}$. For $y \in \cup Y$, let $\{ B_{yj} : j \in \omega \}$ be a base for y. For every $f \in N^I$, there is $j \in \omega$ so that $B_{yj} \subseteq V_{yf}$; i.e. $\cup \{ \{ f \in N^I : B_{yj} \subseteq V_{yf} \} : j \in \omega \} = P(N^I)$. Let k_{yn} be given by 1 a). Set $W_{yn} = \cap \{ B_{yj} : j \leq k_{yn} \}$; this gives, for all $y \in \cup Y$ and $n \in \omega$,
\[(\ast) \quad \{f \in N^I : \forall \eta \in V_{yf}, \eta \in L^n\} \in I_n.\]

Set \(H^n_1 = \bigcup \{W_y : y \in Y_i\}.\) Clearly \(H^n_1\) is an open set containing \(Y_i\), we must verify \(\beta\).

Aiming for a contradiction, let \(x \in X\) be such that for all \(n \in \omega, \{i: x \in H^n_1\}\) is infinite. Set \(A_k = \{f: |\{V \in V_f : x \in V\}| = k\}.\) Because \(\bigcup A_k : k \in \omega = N^I\) and \(h\) is countably complete, there is some \(k \in \omega\) and some basic open set \([\eta], |\eta| = j\) such that

\[(\ast\ast) \quad h([\eta]) \leq h(A_k).\]

Let \(n = j + k + 1\). Because \(J = \{i: x \in H^n_1\} - \text{dom } \eta\) is infinite, there is a one-to-one function \(\theta\) with \(\text{dom } \theta \in [J]^{k+1}\) and range \(\theta \subset N.\) Now \(\eta \cup \theta\) is a function, \(|\eta \cup \theta| = j + k + 1\) so by \(1b\), \(\ast\), and \(\ast\ast\), there is \(f \in [\eta \cup \theta] \cap A_k\) such that for all \(y \in \text{dom } \theta, W_{yn} \subset V_{yf}.\)

However, by the definition of \(H_n\) and the choice of \(\theta, x\) is in at least \(k + 1\) \(V_{mf}\)’s. This contradiction establishes Theorem 2.

Bibliography

University of Pittsburgh

Pittsburgh, Pennsylvania 15260