EACH MAP FROM THE CANTOR SET TO THE PSEUDO-ARC IS NULL PSEUDO-HOMOTOPIE

by

KAZUHIRO KAWAMURA
1. Introduction

A compact connected metric space is called a continuum. K. Kuperberg posed a problem whether the pseudo-arc is pseudo-contractible (University of Houston Problem Book, Problem 31). See below for the definition. In connection with this problem, D. Bellamy [1] constructed a map from the Cantor set onto the pseudo-arc which is null pseudo-homotopic. He also asked ([1], Question 1) whether each map from the Cantor set onto the pseudo-arc is null pseudo-homotopic. The purpose of this paper is to answer the above question in the affirmative. More precisely, we show that each map from the Cantor set to the pseudo-arc (not necessarily onto) is null pseudo-homotopic. Moreover, the parameter space can be taken to be the pseudo-arc.

2. Preliminaries

Definition 1. Let X and Y be continua and $f, g: X \to Y$ be maps. We say that f and g are pseudo-homotopic if there exist a continuum Z, points $a, b \in Z$ and a map $H: X \times Z \to Y$ such that $H(x, a) = f(x), H(x, b) = g(x)$ for each $x \in X$. The continuum Z is called the parameter space of a pseudo-homotopy H.

EACH MAP FROM THE CANTOR SET TO THE PSEUDO-ARC IS NULL PSEUDO-HOMOTOPIC

Kazuhiro Kawamura
A map which is pseudo-homotopic to a constant map is said to be null pseudo-homotopic. If \(\text{id}_X : X \to X \) is null pseudo-homotopic, then we say that \(X \) is pseudo-contractible.

Definition 2. 1) Let \(U = \{U_1, \ldots, U_n\} \) be a collection of sets. The collection \(U \) is called a chain provided \(U_i \cap U_j \neq \emptyset \) if and only if \(|i-j| \leq 1 \).

2) A function \(f : \{1, \ldots, m\} \to \{1, \ldots, n\} \) is called a pattern if \(|f(i) - f(i+1)| \leq 1 \) for each \(i = 1, \ldots, m-1 \).

3) Let \(U = \{U_1, \ldots, U_m\} \) and \(V = \{V_1, \ldots, V_n\} \) be chains, and \(f : \{1, \ldots, m\} \to \{1, \ldots, n\} \) be a pattern. We say that \(U \) follows \(f \) in \(V \) if \(U_i \subseteq V_{f(i)} \) for each \(i = 1, \ldots, m \). In this case, a function \(\overline{f} : U \to V \) is defined by \(\overline{f}(U_i) = V_{f(i)} \). We will identify \(f \) and \(\overline{f} \).

4) Let \(U = \{U_1, \ldots, U_n\} \) be a chain cover of a continuum. The links \(U_1 \) and \(U_n \) are denoted by first \(U \) and last \(U \) respectively. For each \(k (1 \leq k \leq n) \), \(i(U_k) \) is defined by \(U_k = \text{cl}(\bigcup_{j \neq k} U_j) \).

Definition 3. Let \(X \) be a continuum.

1) \(X \) is said to be arc-like if, for each \(\varepsilon > 0 \), there exists a chain cover \(U \) of \(X \) such that \(\text{mesh} U < \varepsilon \).

2) \(X \) is said to be hereditarily indecomposable if no subcontinuum of \(X \) can be represented as the union of two of its proper subcontinua.

3) Hereditarily indecomposable arc-like continuum is topologically unique ([3] and [6]), which is called
the pseudo-arc. Throughout this paper, the pseudo-arc is denoted by P.

4) Let p and q be points of X. X is said to be irreducible between p and q, if X contains no proper subcontinuum which contains both of p and q.

The following theorem is well known and will be used for the proof.

Theorem 4 ([2] and [5]). Let $C = \{C_1, \ldots, C_n\}$ be a chain cover of P and $x \in \iota(C_1)$, $y \in \iota(C_n)$. Suppose that P is irreducible between x and y. Then for each pattern $f: \{1, \ldots, m\} \to \{1, \ldots, n\}$ with $f(1) = 1$ and $f(m) = n$, there exists a chain cover $D = \{D_1, \ldots, D_m\}$ which follows f in C, and $x \in \iota(D_1)$, $y \in \iota(D_m)$.

3. The Main Theorem

Our main theorem is

Theorem 5. Each map from the Cantor set to the pseudo-arc is null pseudo-homotopic. Furthermore, we can take the parameter space of the pseudo-homotopy as the pseudo-arc.

In the rest of this paper, C denote the Cantor set.

The following theorem is the key step.

Proposition 6. Suppose that a map $f: C \to P$ satisfies the following condition:
there exists a point \(a_0 \in P \) such that \(P \) is irreducible between \(a_0 \) and \(y \), for each \(y \in f(C) \).

Then \(f \) is pseudo-homotopic to a constant map with the parameter space \(P \).

Proof. Suppose that \(P \) is irreducible between \(x_0 \) and \(y_0 \). We can take a sequence \((\mathcal{U}_n)_{n \geq 0} \) of open covers of \(C \) as follows:

a) Each \(\mathcal{U}_n \) is a mutually disjoint clopen cover of \(C \).

b) \(\mathcal{U}_{n+1} \) is a refinement of \(\mathcal{U}_n \) for each \(n \).

c) mesh \(\mathcal{U}_n \to 0 \) as \(n \to \infty \).

Step 1. For each \(x \in C \), there exists a chain cover \(V_x \) of \(P \) such that

1-1) \(f(x) \in i(\text{first } V_x) \) and \(a_0 \in i(\text{last } V_x) \).

1-2) mesh \(V_x < 1/4 \) ([2], [4]).

By c) and the continuity of \(f \), we can take an integer \(n(x) > 0 \) such that

1-3) \(f(V_{n(x)}(x)) \subset i(\text{first } V_x) \),

where, \(V_{n(x)}(x) \) denotes the unique member of \(\mathcal{U}_n(x) \) which contains \(x \).

The collection \(\{V_{n(x)}(x) | x \in C \} \) forms an open cover of \(C \), so we can take finitely many points \(x_1, \ldots, x_r \in C \) such that \(C = \bigcup_{i=1}^{r} V_{n(x_i)}(x_i) \). Define \(n_1 \) as

1-4) \(n_1 = \max \{n(x_i) | 1 \leq i \leq r \} \).

Then noticing b), we have

1-5) for each \(D \in \mathcal{U}_{n_1} \), there exists a chain cover \(V_D^{1} \)

such that \(f(D) \subset i(\text{first } V_D^{1}) \) and \(a_0 \in i(\text{last } V_D^{1}) \).
For each member D of \mathcal{D}_{n_1}, we define a chain cover U_D^1 of P as follows.

1-6) (The number of links of U_D^1) = (The number of links of V_D^1)

1-7) $x_0 \in i$(first U_D^1) and $y_0 \in i$(last U_D^1).

Now we have an open cover $D \times U_D^1$ of $D \times P$, for each $D \in \mathcal{D}_{n_1}$.

Step 2. Fix a member D_1 of \mathcal{D}_{n_1}. For each $x \in D_1$, we can take a chain cover V_x^2 of P such that

2-1) $f(x) \in i$(first V_x^2) and $a_0 \in i$(last V_x^2).

2-2) mesh $V_x^2 < 1/8$ and V_x^2 is a closure refinement of $V_{D_1}^1$ (that is, for each $V \in V_x^2$, there exists $U \in V_{D_1}^1$ such that $cl(V) \subseteq U$).

Again by c), there exists an integer $m(x) > 0$ such that

2-3) $f(w_m(x)) \subseteq i$(first V_x^2).

The collection $\{w_m(x) | x \in D_1\}$ forms an open cover of D_1, so there exist finitely many points $y_1, \ldots, y_s \in D_1$ such that $D_1 = \bigcup_{j=1}^{s} w_m(y_j) (y_j)$.

Repeating these processes for all members of \mathcal{D}_{n_1}, we obtain finitely many points y_1, \ldots, y_t and chain covers $V_{y_1}^2, \ldots, V_{y_t}^2$. Define n_2 as

2-4) $n_2 = \max \{m(y_j) | 1 \leq j \leq t\}$.

Then we have
2-5) for each $D_2 \in \mathcal{D}_{n_2}$, there exists a chain cover $V^2_{D_2}$ such that $f(D_2) \subseteq i(\text{first } V^2_{D_2})$ and $a_0 \in i(\text{last } V^2_{D_2})$.

Next, we define a pattern as follows. For each $D_2 \in \mathcal{D}_{n_2}$, take the unique $D_1 \in \mathcal{D}_{n_1}$ which contains D_2. Then by the choice of $V^2_{D_2}$ (2-2), $V^2_{D_2}$ is a closure refinement of $V^1_{D_1}$. So we can find a pattern $f_{D_2D_1} : V^2_{D_2} + V^1_{D_1}$ such that

$\begin{align*}
&f_{D_2D_1} \text{ (first } V^2_{D_2}) = \text{first } V^1_{D_1} \text{ and } \\
&f_{D_2D_1} \text{ (last } V^2_{D_2}) = \text{last } V^1_{D_1}. \text{ (Recall the remark in Definition 2).}
\end{align*}$

Applying Theorem 4, there exists a chain cover $U^2_{D_2}$ of P such that

2-6) $U^2_{D_2}$ follows $f_{D_2D_1}$ in $U^1_{D_1}$.

2-7) $x_0 \in i(\text{first } U^2_{D_2})$ and $y_0 \in i(\text{last } U^2_{D_2})$.

Now, we have a covering $D_2 \times U^2_{D_2}$ of $D_2 \times P$, for each $D_2 \in \mathcal{D}_{n_2}$.

Step 3. Continuing these processes, we obtain a subsequence $(n_k)_{k>1}$ satisfying the following conditions.

3-1) $x_0 \in i(\text{first } U^k_{D_k})$ and $y_0 \in i(\text{last } U^k_{D_k})$.

3-2) $f(D_k) \subseteq i(\text{first } U^k_{D_k})$ and $a_0 \in i(\text{last } U^k_{D_k})$.

3-3) For each $D_k \supset D_{k+1}$ ($D_\alpha \in \mathcal{D}_{\alpha}$, $\alpha = k, k+1$), there exists a pattern $f_{D_{k+1}D_k}$ such that $u_{D_{k+1}}^{k+1}$ ($v_{D_{k+1}D_k}^{k+1}$ resp.) follows $f_{D_{k+1}D_k}$ in $u_{D_k}^k$ ($v_{D_k}^k$ resp.).

3-4) $f_{D_{k+1}D_k}$ (first $u_{D_k}^k$) = first $u_{D_k}^k$, and $f_{D_{k+1}D_k}$ (last $u_{D_k}^k$) = last $u_{D_k}^k$.

The same conditions hold for $v_{D_{k+1}D_k}^k$ and $v_{D_k}^k$.

3-5) mesh $\nu_{D_k}^k < 1/2^{k+1}$ for each $k \geq 1$.

There are then more and more chains, both V's and U's at each stage than there were before. Each chain at the k-level has several different refining chains at $(k+1)$-level.

Finally, we define $H: \mathcal{C} \times \mathcal{P} \to \mathcal{P}$ as follows. For each $x \in \mathcal{C}$, there exists the unique sequence $D_1(x) \supset D_2(x) \supset \ldots$ with $D_k(x) \in \mathcal{D}_{n_k}$ such that $\{x\} = \bigcap_{k \geq 1} D_k(x)$.

Then we have two sequences $\{u_{D_k(x)}^k\}_{k \geq 1}$ and $\{v_{D_k(x)}^k\}_{k \geq 1}$ of chain covers of \mathcal{P}. By the standard method of constructing a map between the pseudo-arcs, we have a map $H|_{x \times \mathcal{P}}: x \times \mathcal{P} \to \mathcal{P}$ such that

3-6) $H(x \times u_{D_k(x)}^k(i)) \subseteq \text{st}(v_{D_k(x)}^k(i), u_{D_k(x)}^k)$ for each $i = 1, \ldots, k.$

Notice the following.

3-7) If $x, y \in D_k \in \mathcal{D}_{n_k}$, then $u_{D_i(x)}^i = u_{D_i(y)}^i$ and $v_{D_i(x)}^i = v_{D_i(y)}^i$ for each $i = 1, \ldots, k$.
Using this fact, it is easy to see that the map H defined as above is continuous and $H(x, x_0) = f(x)$, $H(x, y_0) = a_0$ for each $x \in C$. This completes the proof.

Proof of Theorem 5.

Let $f: C \to P$ be a map. Take a nondegenerate proper subcontinuum Q of P. By [3], Q is a retract of P. Fix a retraction $r: P \to Q$ and a homeomorphism $h: P \to Q$. Fix a point a_0 of Q which lies in a different component from Q. Applying Proposition 6 to $h \circ f: C \to Q$ and a_0, we have a map $H: C \times P \to P$ and points x_0 and $y_0 \in P$ such that $H|C \times x_0 = h \circ f$ and $H|C \times y_0 = a_0$. Define $F: C \times P \to P$ as $F = h^{-1} \circ r \circ H$. Then $F|C \times x_0 = f$ and $F|C \times y_0 = h^{-1}(a_0)$. This completes the proof of Theorem 5.

Corollary 7. Any Cantor set in the pseudo-arc P is pseudo-contractible in P.

References

Institute of Mathematics

University of Tsukuba

Ibaraki 305, Japan